Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Orthogonality=== Both {{mvar|T<sub>n</sub>}} and {{mvar|U<sub>n</sub>}} form a sequence of [[orthogonal polynomials]]. The polynomials of the first kind {{mvar|T<sub>n</sub>}} are orthogonal with respect to the weight: <math display="block">\frac{1}{\sqrt{1 - x^2}},</math> on the interval {{closed-closed|−1, 1}}, i.e. we have: <math display="block">\int_{-1}^1 T_n(x)\,T_m(x)\,\frac{\mathrm{d}x}{\sqrt{1-x^2}} = \begin{cases} 0 & ~\text{ if }~ n \ne m, \\[5mu] \pi & ~\text{ if }~ n=m=0, \\[5mu] \frac{\pi}{2} & ~\text{ if }~ n=m \ne 0. \end{cases}</math> This can be proven by letting {{math|1=''x'' = cos ''θ''}} and using the defining identity {{math|1=''T''<sub>''n''</sub>(cos ''θ'') = cos(''nθ'')}}. Similarly, the polynomials of the second kind {{mvar|U<sub>n</sub>}} are orthogonal with respect to the weight: <math display="block">\sqrt{1-x^2}</math> on the interval {{closed-closed|−1, 1}}, i.e. we have: <math display="block">\int_{-1}^1 U_n(x)\,U_m(x)\,\sqrt{1-x^2} \,\mathrm{d}x = \begin{cases} 0 & ~\text{ if }~ n \ne m, \\[5mu] \frac{\pi}{2} & ~\text{ if }~ n = m. \end{cases}</math> (The measure {{math|{{sqrt|1 − ''x''<sup>2</sup>}} d''x''}} is, to within a normalizing constant, the [[Wigner semicircle distribution]].) These orthogonality properties follow from the fact that the Chebyshev polynomials solve the [[Chebyshev equation|Chebyshev differential equations]]: <math display="block">\begin{align} (1 - x^2)T_n'' - xT_n' + n^2 T_n &= 0, \\[1ex] (1 - x^2)U_n'' - 3xU_n' + n(n + 2) U_n &= 0, \end{align}</math>which are [[Sturm–Liouville problem|Sturm–Liouville differential equations]]. It is a general feature of such [[differential equation]]s that there is a distinguished orthonormal set of solutions. (Another way to define the Chebyshev polynomials is as the solutions to [[Sturm–Liouville problem|those equations]].) The {{mvar|T<sub>n</sub>}} also satisfy a discrete orthogonality condition: <math display="block">\sum_{k=0}^{N-1}{T_i(x_k)\,T_j(x_k)} = \begin{cases} 0 & ~\text{ if }~ i \ne j, \\[5mu] N & ~\text{ if }~ i = j = 0, \\[5mu] \frac{N}{2} & ~\text{ if }~ i = j \ne 0, \end{cases} </math> where {{mvar|N}} is any integer greater than {{math|max(''i'', ''j'')}},{{sfn|Mason|Handscomb|2002}} and the {{math|''x''<sub>''k''</sub>}} are the {{mvar|N}} [[Chebyshev nodes]] (see above) of {{math|''T''<sub>''N'' </sub>(''x'')}}: <math display="block">x_k = \cos\left(\pi\,\frac{2k+1}{2N}\right) \quad ~\text{ for }~ k = 0, 1, \dots, N-1.</math> For the polynomials of the second kind and any integer {{math|''N'' > ''i'' + ''j''}} with the same Chebyshev nodes {{math|''x''<sub>''k''</sub>}}, there are similar sums: <math display="block">\sum_{k=0}^{N-1}{U_i(x_k)\,U_j(x_k)\left(1-x_k^2\right)} = \begin{cases} 0 & \text{ if }~ i \ne j, \\[5mu] \frac{N}{2} & \text{ if }~ i = j, \end{cases}</math> and without the weight function: <math display="block">\sum_{k=0}^{N-1}{ U_i(x_k) \, U_j(x_k) } = \begin{cases} 0 & ~\text{ if }~ i \not\equiv j \pmod{2}, \\[5mu] N \cdot (1 + \min\{i,j\}) & ~\text{ if }~ i \equiv j\pmod{2}. \end{cases} </math> For any integer {{math|''N'' > ''i'' + ''j''}}, based on the {{mvar|N}} zeros of {{math|''U''<sub>''N'' </sub>(''x'')}}: <math display="block">y_k = \cos\left(\pi\,\frac{k+1}{N+1}\right) \quad ~\text{ for }~ k=0, 1, \dots, N-1,</math> one can get the sum: <math display="block">\sum_{k=0}^{N-1}{U_i(y_k)\,U_j(y_k)(1-y_k^2)} = \begin{cases} 0 & ~\text{ if } i \ne j, \\[5mu] \frac{N+1}{2} & ~\text{ if } i = j, \end{cases}</math> and again without the weight function: <math display="block">\sum_{k=0}^{N-1}{U_i(y_k)\,U_j(y_k)} = \begin{cases} 0 & ~\text{ if }~ i \not\equiv j \pmod{2}, \\[5mu] \bigl(\min\{i,j\} + 1\bigr)\bigl(N-\max\{i,j\}\bigr) & ~\text{ if }~ i \equiv j\pmod{2}. \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)