Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conjugate gradient method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Convergence theorem === Define a subset of polynomials as :<math> \Pi_k^* := \left\lbrace \ p \in \Pi_k \ : \ p(0)=1 \ \right\rbrace \,, </math> where <math> \Pi_k </math> is the set of [[Polynomial ring|polynomials]] of maximal degree <math> k </math>. Let <math> \left( \mathbf{x}_k \right)_k </math> be the iterative approximations of the exact solution <math> \mathbf{x}_* </math>, and define the errors as <math> \mathbf{e}_k := \mathbf{x}_k - \mathbf{x}_* </math>. Now, the rate of convergence can be approximated as <ref name="BP" /><ref>{{Cite book |title=Iterative solution of large sparse systems of equations |last=Hackbusch |first=W. |isbn=978-3-319-28483-5 |edition=2nd |location=Switzerland |publisher=Springer |oclc=952572240|date=2016-06-21 }}</ref> :<math> \begin{align} \left\| \mathbf{e}_k \right\|_\mathbf{A} &= \min_{p \in \Pi_k^*} \left\| p(\mathbf{A}) \mathbf{e}_0 \right\|_\mathbf{A} \\ &\leq \min_{p \in \Pi_k^*} \, \max_{ \lambda \in \sigma(\mathbf{A})} | p(\lambda) | \ \left\| \mathbf{e}_0 \right\|_\mathbf{A} \\ &\leq 2 \left( \frac{ \sqrt{\kappa(\mathbf{A})}-1 }{ \sqrt{\kappa(\mathbf{A})}+1 } \right)^k \ \left\| \mathbf{e}_0 \right\|_\mathbf{A} \\ &\leq 2 \exp\left(\frac{-2k}{\sqrt{\kappa(\mathbf{A})}}\right) \ \left\| \mathbf{e}_0 \right\|_\mathbf{A} \,, \end{align} </math> where <math> \sigma(\mathbf{A}) </math> denotes the [[Spectrum of a matrix|spectrum]], and <math> \kappa(\mathbf{A}) </math> denotes the [[condition number]]. This shows <math>k = \tfrac{1}{2}\sqrt{\kappa(\mathbf{A})} \log\left(\left\| \mathbf{e}_0 \right\|_\mathbf{A} \varepsilon^{-1}\right)</math> iterations suffices to reduce the error to <math>2\varepsilon</math> for any <math>\varepsilon>0</math>. Note, the important limit when <math> \kappa(\mathbf{A}) </math> tends to <math> \infty </math> :<math> \frac{ \sqrt{\kappa(\mathbf{A})}-1 }{ \sqrt{\kappa(\mathbf{A})}+1 } \approx 1 - \frac{2}{\sqrt{\kappa(\mathbf{A})}} \quad \text{for} \quad \kappa(\mathbf{A}) \gg 1 \,. </math> This limit shows a faster convergence rate compared to the iterative methods of [[Jacobi method|Jacobi]] or [[Gauss–Seidel method|Gauss–Seidel]] which scale as <math> \approx 1 - \frac{2}{\kappa(\mathbf{A})} </math>. No [[round-off error]] is assumed in the convergence theorem, but the convergence bound is commonly valid in practice as theoretically explained<ref name="AG" /> by [[Anne Greenbaum]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)