Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Contour integration
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Example 3 β trigonometric integrals=== Certain substitutions can be made to integrals involving [[trigonometric functions]], so the integral is transformed into a rational function of a complex variable and then the above methods can be used in order to evaluate the integral. As an example, consider <math display=block>\int_{-\pi}^\pi \frac{1 }{ 1 + 3 (\cos t)^2} \,dt.</math> We seek to make a substitution of {{math|1=''z'' = ''e<sup>it</sup>''}}. Now, recall <math display=block>\cos t = \frac12 \left(e^{it}+e^{-it}\right) = \frac12 \left(z+\frac{1}{z}\right)</math> and <math display=block>\frac{dz}{dt} = iz,\ dt = \frac{dz}{iz}.</math> Taking {{mvar|C}} to be the unit circle, we substitute to get: <math>\begin{align} \oint_C \frac{1}{ 1 + 3 \left(\frac12 \left(z+\frac{1}{z}\right)\right)^2} \,\frac{dz}{iz} &= \oint_C \frac{1 }{ 1 + \frac34 \left(z+\frac{1}{z}\right)^2}\frac{1}{iz} \,dz \\ &= \oint_C \frac{-i}{ z+\frac34 z\left(z+\frac{1}{z}\right)^2}\,dz \\ &= -i \oint_C \frac{dz}{ z+\frac34 z\left(z^2+2+\frac{1}{z^2}\right)} \\ &= -i \oint_C \frac{dz}{ z+\frac34 \left(z^3+2z+\frac{1}{z}\right)} \\ &= -i \oint_C \frac{dz}{ \frac34 z^3+\frac52 z+\frac{3}{4z}} \\ &= -i \oint_C \frac{4}{ 3z^3+10z+\frac{3}{z}}\,dz \\ &= -4i \oint_C \frac{dz}{ 3z^3+10z+\frac{3}{z}} \\ &= -4i \oint_C \frac{z}{ 3z^4+10z^2+3 } \,dz \\ &= -4i \oint_C \frac{z}{ 3\left(z+\sqrt{3}i\right)\left(z-\sqrt{3}i\right)\left(z+\frac{i}{\sqrt 3}\right)\left(z-\frac{i}{\sqrt 3}\right)}\,dz \\ &= -\frac{4i}{3} \oint_C \frac{z}{\left(z+\sqrt{3}i\right)\left(z-\sqrt{3}i\right)\left(z+\frac{i}{\sqrt 3}\right)\left(z-\frac{i}{\sqrt 3}\right)}\,dz. \end{align}</math> The singularities to be considered are at <math>\tfrac{\pm i}{\sqrt{3}}.</math> Let {{math|''C''<sub>1</sub>}} be a small circle about <math>\tfrac{i}{\sqrt{3}},</math> and {{math|''C''<sub>2</sub>}} be a small circle about <math>\tfrac{-i}{\sqrt{3}}.</math> Then we arrive at the following: <math display=block>\begin{align} & -\frac{4i}{3} \left [\oint_{C_1} \frac{\frac{z}{\left(z+\sqrt{3}i\right)\left(z-\sqrt{3}i\right)\left(z+\frac{i}{\sqrt 3} \right)}}{z-\frac{i}{\sqrt 3}}\,dz +\oint_{C_2} \frac{\frac{z}{\left(z+\sqrt{3}i\right)\left(z-\sqrt{3}i\right)\left(z-\frac{i}{\sqrt 3}\right)}}{z+\frac{i}{\sqrt 3}} \, dz \right ] \\ = {} & -\frac{4i}{3} \left[ 2\pi i \left[\frac{z}{\left(z+\sqrt{3}i\right)\left(z-\sqrt{3}i\right)\left(z+\frac{i}{\sqrt 3}\right)}\right]_{z=\frac{i}{\sqrt 3}} + 2\pi i \left[\frac{z}{\left(z+\sqrt{3}i\right)\left(z-\sqrt{3}i\right)\left(z-\frac{i}{\sqrt 3}\right)} \right]_{z=-\frac{i}{\sqrt 3}}\right] \\ = {} & \frac{8\pi}{3} \left[\frac{\frac{i}{\sqrt 3}}{\left(\frac{i}{\sqrt 3}+\sqrt{3}i\right)\left(\frac{i}{\sqrt 3}-\sqrt{3}i\right)\left(\frac{i}{\sqrt 3}+\frac{i}{\sqrt 3}\right)} + \frac{-\frac{i}{\sqrt 3}}{\left(-\frac{i}{\sqrt 3}+\sqrt{3}i\right)\left(-\frac{i}{\sqrt 3}-\sqrt{3}i\right)\left(-\frac{i}{\sqrt 3}-\frac{i}{\sqrt 3}\right)} \right] \\ = {} & \frac{8\pi}{3} \left[\frac{\frac{i}{\sqrt 3}}{\left(\frac{4}{\sqrt 3}i\right)\left(-\frac{2}{i\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}i}\right)}+\frac{-\frac{i}{\sqrt 3}}{\left(\frac{2}{\sqrt 3}i\right)\left(-\frac{4}{\sqrt 3}i\right)\left(-\frac{2}{\sqrt 3}i\right)}\right] \\ = {} & \frac{8\pi}{3}\left[\frac{\frac{i}{\sqrt 3}}{i\left(\frac{4}{\sqrt 3}\right)\left(\frac{2}{\sqrt 3}\right)\left(\frac{2}{\sqrt 3}\right)}+\frac{-\frac{i}{\sqrt 3}}{-i\left(\frac{2}{\sqrt 3}\right)\left(\frac{4}{\sqrt 3}\right)\left(\frac{2}{\sqrt 3}\right)}\right] \\ = {} & \frac{8\pi}{3}\left[\frac{\frac{1}{\sqrt 3}}{\left(\frac{4}{\sqrt 3}\right)\left(\frac{2}{\sqrt 3}\right)\left(\frac{2}{\sqrt 3}\right)}+\frac{\frac{1}{\sqrt 3}}{\left(\frac{2}{\sqrt 3}\right)\left(\frac{4}{\sqrt 3}\right)\left(\frac{2}{\sqrt 3}\right)}\right] \\ = {} & \frac{8\pi}{3}\left[\frac{\frac{1}{\sqrt 3}}{\frac{16}{3\sqrt{3}}}+\frac{\frac{1}{\sqrt 3}}{\frac{16}{3\sqrt{3}}} \right] \\ = {} & \frac{8\pi}{3}\left[\frac{3}{16} + \frac{3}{16} \right] \\ = {} & \pi. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)