Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Complex random vectors== {{further|Complex random vector#Covariance matrix and pseudo-covariance matrix}} The [[Variance#Generalizations|variance]] of a [[complex number|complex]] ''scalar-valued'' random variable with expected value <math>\mu</math> is conventionally defined using [[complex conjugation]]: <math display="block"> \operatorname{var}(Z) = \operatorname{E}\left[ (Z - \mu_Z)\overline{(Z - \mu_Z)} \right], </math> where the complex conjugate of a complex number <math>z</math> is denoted <math>\overline{z}</math>; thus the variance of a complex random variable is a real number. If <math>\mathbf{Z} = (Z_1,\ldots,Z_n) ^\mathsf{T}</math> is a column vector of complex-valued random variables, then the [[conjugate transpose]] <math>\mathbf{Z}^\mathsf{H}</math> is formed by ''both'' transposing and conjugating. In the following expression, the product of a vector with its conjugate transpose results in a square matrix called the '''covariance matrix''', as its expectation:<ref name=Lapidoth>{{cite book |first=Amos |last=Lapidoth |year=2009 |title=A Foundation in Digital Communication |publisher=Cambridge University Press |isbn=978-0-521-19395-5}}</ref>{{rp|p=293}} <math display="block"> \operatorname{K}_{\mathbf{Z}\mathbf{Z}} = \operatorname{cov}[\mathbf{Z},\mathbf{Z}] = \operatorname{E} \left[ (\mathbf{Z} - \boldsymbol{\mu}_\mathbf{Z})(\mathbf{Z} - \boldsymbol{\mu}_\mathbf{Z})^\mathsf{H} \right], </math> The matrix so obtained will be [[Hermitian matrix|Hermitian]] [[Positive-semidefinite matrix|positive-semidefinite]],<ref>{{Cite web |url=http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/expect.html |first=Mike |last=Brookes |title=The Matrix Reference Manual}}</ref> with real numbers in the main diagonal and complex numbers off-diagonal. ;Properties * The covariance matrix is a [[Hermitian matrix]], i.e. <math>\operatorname{K}_{\mathbf{Z}\mathbf{Z}}^\mathsf{H} = \operatorname{K}_{\mathbf{Z}\mathbf{Z}}</math>.<ref name=KunIlPark/>{{rp||page=179}} * The diagonal elements of the covariance matrix are real.<ref name=KunIlPark/>{{rp||page=179}} ===Pseudo-covariance matrix{{anchor|Pseudo}}=== For complex random vectors, another kind of second central moment, the '''pseudo-covariance matrix''' (also called '''relation matrix''') is defined as follows: <math display="block"> \operatorname{J}_{\mathbf{Z}\mathbf{Z}} = \operatorname{cov}[\mathbf{Z},\overline{\mathbf{Z}}] = \operatorname{E} \left[ (\mathbf{Z} - \boldsymbol{\mu}_\mathbf{Z})(\mathbf{Z} - \boldsymbol{\mu}_\mathbf{Z})^\mathsf{T} \right] </math> In contrast to the covariance matrix defined above, Hermitian transposition gets replaced by transposition in the definition. Its diagonal elements may be complex valued; it is a [[complex symmetric matrix]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)