Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariant derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to Lie derivative== A covariant derivative introduces an extra geometric structure on a manifold that allows vectors in neighboring tangent spaces to be compared: there is no canonical way to compare vectors from different tangent spaces because there is no canonical coordinate system. There is however another generalization of directional derivatives which ''is'' canonical: the [[Lie derivative]], which evaluates the change of one vector field along the flow of another vector field. Thus, one must know both vector fields in a neighborhood, not merely at a single point. The covariant derivative on the other hand introduces its own change for vectors in a given direction, and it only depends on the vector direction at a single point, rather than a vector field in a neighborhood of a point. In other words, the covariant derivative is linear (over {{math|''C''{{isup|β}}(''M'')}}) in the direction argument, while the Lie derivative is linear in neither argument. Note that the antisymmetrized covariant derivative {{math|β<sub>''u''</sub>''v'' β β<sub>''v''</sub>''u''}}, and the Lie derivative {{math|''L''<sub>''u''</sub>''v''}} differ by the [[torsion of connection|torsion of the connection]], so that if a connection is torsion free, then its antisymmetrization ''is'' the Lie derivative.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)