Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expected value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Expectations under convergence of random variables=== In general, it is not the case that <math>\operatorname{E}[X_n] \to \operatorname{E}[X]</math> even if <math>X_n\to X</math> pointwise. Thus, one cannot interchange limits and expectation, without additional conditions on the random variables. To see this, let <math>U</math> be a random variable distributed uniformly on <math>[0,1].</math> For <math>n\geq 1,</math> define a sequence of random variables <math display="block">X_n = n \cdot \mathbf{1}\left\{ U \in \left(0,\tfrac{1}{n}\right)\right\},</math> with <math>\mathbf{1}\{A\}</math> being the indicator function of the event <math>A.</math> Then, it follows that <math>X_n \to 0</math> pointwise. But, <math>\operatorname{E}[X_n] = n \cdot \Pr\left(U \in \left[ 0, \tfrac{1}{n}\right] \right) = n \cdot \tfrac{1}{n} = 1</math> for each <math>n.</math> Hence, <math>\lim_{n \to \infty} \operatorname{E}[X_n] = 1 \neq 0 = \operatorname{E}\left[ \lim_{n \to \infty} X_n \right].</math> Analogously, for general sequence of random variables <math>\{ Y_n : n \geq 0\},</math> the expected value operator is not <math>\sigma</math>-additive, i.e. <math display="block">\operatorname{E}\left[\sum^\infty_{n=0} Y_n\right] \neq \sum^\infty_{n=0}\operatorname{E}[Y_n].</math> An example is easily obtained by setting <math>Y_0 = X_1</math> and <math>Y_n = X_{n+1} - X_n</math> for <math>n \geq 1,</math> where <math>X_n</math> is as in the previous example. A number of convergence results specify exact conditions which allow one to interchange limits and expectations, as specified below. * [[Monotone convergence theorem]]: Let <math>\{X_n : n \geq 0\}</math> be a sequence of random variables, with <math>0 \leq X_n \leq X_{n+1}</math> (a.s) for each <math>n \geq 0.</math> Furthermore, let <math>X_n \to X</math> pointwise. Then, the monotone convergence theorem states that <math>\lim_n\operatorname{E}[X_n]=\operatorname{E}[X].</math> {{pb}} Using the monotone convergence theorem, one can show that expectation indeed satisfies countable additivity for non-negative random variables. In particular, let <math>\{X_i\}_{i=0}^\infty</math> be non-negative random variables. It follows from the [[monotone convergence theorem]] that <math display="block"> \operatorname{E}\left[\sum^\infty_{i=0}X_i\right] = \sum^\infty_{i=0}\operatorname{E}[X_i]. </math> * [[Fatou's lemma]]: Let <math>\{ X_n \geq 0 : n \geq 0\}</math> be a sequence of non-negative random variables. Fatou's lemma states that <math display="block">\operatorname{E}[\liminf_n X_n] \leq \liminf_n \operatorname{E}[X_n].</math> {{pb}} '''Corollary.''' Let <math>X_n \geq 0</math> with <math>\operatorname{E}[X_n] \leq C</math> for all <math>n \geq 0.</math> If <math>X_n \to X</math> (a.s), then <math>\operatorname{E}[X] \leq C.</math> {{pb}} '''Proof''' is by observing that <math display="inline"> X = \liminf_n X_n</math> (a.s.) and applying Fatou's lemma. * [[Dominated convergence theorem]]: Let <math>\{X_n : n \geq 0 \}</math> be a sequence of random variables. If <math>X_n\to X</math> [[pointwise convergence|pointwise]] (a.s.), <math>|X_n|\leq Y \leq +\infty</math> (a.s.), and <math>\operatorname{E}[Y]<\infty.</math> Then, according to the dominated convergence theorem, ** <math>\operatorname{E}|X| \leq \operatorname{E}[Y] <\infty</math>; ** <math>\lim_n\operatorname{E}[X_n]=\operatorname{E}[X]</math> ** <math>\lim_n\operatorname{E}|X_n - X| = 0.</math> * [[Uniform integrability]]: In some cases, the equality <math>\lim_n\operatorname{E}[X_n]=\operatorname{E}[\lim_n X_n]</math> holds when the sequence <math>\{X_n\}</math> is ''uniformly integrable.''
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)