Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Sum of two independent exponential random variables=== The probability distribution function (PDF) of a sum of two independent random variables is the [[convolution of probability distributions|convolution of their individual PDFs]]. If <math>X_1</math> and <math>X_2</math> are independent exponential random variables with respective rate parameters <math>\lambda_1</math> and <math>\lambda_2,</math> then the probability density of <math>Z=X_1+X_2</math> is given by <math display="block"> \begin{align} f_Z(z) &= \int_{-\infty}^\infty f_{X_1}(x_1) f_{X_2}(z - x_1)\,dx_1\\ &= \int_0^z \lambda_1 e^{-\lambda_1 x_1} \lambda_2 e^{-\lambda_2(z - x_1)} \, dx_1 \\ &= \lambda_1 \lambda_2 e^{-\lambda_2 z} \int_0^z e^{(\lambda_2 - \lambda_1)x_1}\,dx_1 \\ &= \begin{cases} \dfrac{\lambda_1 \lambda_2}{\lambda_2-\lambda_1} \left(e^{-\lambda_1 z} - e^{-\lambda_2 z}\right) & \text{ if } \lambda_1 \neq \lambda_2 \\[4 pt] \lambda^2 z e^{-\lambda z} & \text{ if } \lambda_1 = \lambda_2 = \lambda. \end{cases} \end{align} </math> The entropy of this distribution is available in closed form: assuming <math>\lambda_1 > \lambda_2</math> (without loss of generality), then <math display="block">\begin{align} H(Z) &= 1 + \gamma + \ln \left( \frac{\lambda_1 - \lambda_2}{\lambda_1 \lambda_2} \right) + \psi \left( \frac{\lambda_1}{\lambda_1 - \lambda_2} \right) , \end{align}</math> where <math>\gamma</math> is the [[Euler-Mascheroni constant]], and <math>\psi(\cdot)</math> is the [[digamma function]].<ref>{{cite arXiv|last1=Eckford |first1=Andrew W. |last2=Thomas |first2=Peter J. |date=2016 |title=Entropy of the sum of two independent, non-identically-distributed exponential random variables |class=cs.IT |eprint=1609.02911}}</ref> In the case of equal rate parameters, the result is an [[Erlang distribution]] with shape 2 and parameter <math>\lambda,</math> which in turn is a special case of [[gamma distribution]]. The sum of n independent Exp(''Ξ»)'' exponential random variables is Gamma(n, ''Ξ»)'' distributed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)