Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Frequency modulation synthesis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Spectral analysis == [[File:DemoFMfreq.wav|thumb|2-operator demonstration: if the frequency of the modulator is lower than that of the carrier, the output note will be that of the modulator.]] There are multiple variations of FM synthesis, including: *Various operator arrangements (known as "FM Algorithms" in Yamaha terminology) **2 operators **Serial FM (multiple stages) **Parallel FM (multiple modulators, multiple-carriers), **Mix of them *Various waveform of operators **Sinusoidal waveform **Other waveforms *Additional modulation **Linear FM **Exponential FM (preceded by the [[anti-logarithm]] conversion for CV/oct. interface of analog synthesizers) **[[Oscillator sync]] with FM ''etc''. As the basic of these variations, we analyze the spectrum of 2 operators (linear FM synthesis using two sinusoidal operators) on the following. === 2 operators === The spectrum generated by FM synthesis with one modulator is expressed as follows:<ref>{{harvnb|Chowning|1973|pp=1β2}}</ref><ref> {{cite web | last = Doering | first = Ed | title = Frequency Modulation Mathematics | url = http://cnx.org/content/m15482/latest/ | access-date = 2013-04-11 }}</ref> For modulation signal <math>m(t) = B\,\sin(\omega_m t)\,</math>, the carrier signal is:<ref group="note">Note that modulation signal <math>m(t)</math> as [[instantaneous frequency]] is converted to the [[phase (waves)|phase]] of carrier signal <math>FM(t)</math>, by time integral between <math>[0, t]</math>.</ref> :<math>\begin{align} FM(t) & \ =\ A\,\sin\left(\,\int_0^t \left(\omega_c + B\,\sin(\omega_m\,\tau)\right)d\tau\right) \\ & \ =\ A\,\sin\left(\omega_c\,t - \frac{B}{\omega_m}\left(\cos(\omega_m\,t) - 1\right)\right) \\ & \ =\ A\,\sin\left(\omega_c\,t + \frac{B}{\omega_m}\left(\sin(\omega_m\,t - \pi/2) + 1\right)\right) \\ \end{align}</math> If we were to ignore the constant phase terms on the carrier <math>\phi_c = B/\omega_m\,</math> and the modulator <math>\phi_m = - \pi/2\,</math>, finally we would get the following expression, as seen on {{harvnb|Chowning|1973}} and {{harvnb|Roads|1996|p=[https://books.google.com/books?id=nZ-TetwzVcIC&&pg=PA232 232]}}: :<math>\begin{align} FM(t) & \ \approx\ A\,\sin\left(\omega_c\,t + \beta\,\sin(\omega_m\,t)\right) \\ & \ =\ A\left( J_0(\beta) \sin(\omega_c\,t) + \sum_{n=1}^{\infty} J_n(\beta)\left[\,\sin((\omega_c+n\,\omega_m)\,t)\ +\ (-1)^{n}\sin((\omega_c-n\,\omega_m)\,t)\,\right] \right) \\ & \ =\ A\sum_{n=-\infty}^{\infty} J_n(\beta)\,\sin((\omega_c+n\,\omega_m)\,t) \end{align}</math> where <math>\omega_c\,,\,\omega_m\,</math> are [[angular frequency|angular frequencies]] (<math>\,\omega = 2\pi f\,</math>) of carrier and modulator, <math>\beta = B / \omega_m\,</math> is [[frequency modulation#Modulation index|frequency modulation index]], and [[amplitude]]s <math>J_n(\beta)\,</math> is <math>n\,</math>-th [[Bessel function#Bessel functions of the first kind : JΞ±|Bessel function of first kind]], respectively.<ref group="note">The above expression is transformed using [[List of trigonometric identities#Angle sum and difference identities|trigonometric addition formulas]] : <math>\begin{align} \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \end{align}</math> and a lemma of Bessel function : <math>\begin{align} \cos(\beta\sin \theta) & = J_0(\beta) + 2\sum_{n=1}^{\infty}J_{2n}(\beta)\cos(2n\theta) \\ \sin(\beta\sin \theta) & = 2\sum_{n=0}^{\infty}J_{2n+1}(\beta)\sin((2n+1)\theta) \end{align}</math> : ('''Source''': {{harvnb|Kreh|2012}}) as following: : <math>\begin{align} & \sin\left(\theta_c + \beta\,\sin(\theta_m)\right) \\ & \ =\ \sin(\theta_c)\cos(\beta\sin(\theta_m)) + \cos(\theta_c)\sin(\beta\sin(\theta_m)) \\ & \ =\ \sin(\theta_c)\left[J_0(\beta) + 2\sum_{n=1}^{\infty}J_{2n}(\beta)\cos(2n \theta_m)\right] + \cos(\theta_c)\left[2\sum_{n=0}^{\infty}J_{2n+1}(\beta)\sin((2n+1)\theta_m)\right] \\ & \ =\ J_0(\beta) \sin(\theta_c) + J_1(\beta) 2\cos(\theta_c)\sin(\theta_m) + J_2(\beta) 2\sin(\theta_c)\cos(2\theta_m) + J_3(\beta) 2\cos(\theta_c)\sin(3\theta_m) + ... \\ & \ =\ J_0(\beta) \sin(\theta_c) + \sum_{n=1}^{\infty} J_n(\beta)\left[\,\sin(\theta_c + n\theta_m)\ +\ (-1)^{n}\sin(\theta_c - n\theta_m)\,\right] \\ & \ =\ \sum_{n=-\infty}^{\infty} J_n(\beta)\,\sin(\theta_c + n\theta_m)\qquad(\because\ J_{-n}(x) = (-1)^n J_{n}(x)) \end{align}</math></ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)