Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fubini's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Fubini's theorem in multiplications of integrals == === Product of two integrals === For the product of two integrals with lower limit zero and a common upper limit we have the following formula: :{| class = "wikitable" |<math>\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr] = \int_{0}^{1} \int_{0}^{u} x\,v(xy) \,w(x) + x\,v(x) \,w(xy) \,\mathrm{d}x \,\mathrm{d}y </math> |} === Proof === Let <math> V(x) </math> and <math> W(x) </math> are primitive functions of the functions <math> v(x) </math> and <math> w(x ) </math> respectively, which pass through the origin: :<math>\int_{0}^{u} v(x) \,\mathrm{d}x = V(u), \quad \quad \int_{0}^{u} w(x) \,\mathrm{d}x = W(u)</math> Therefore, we have <math display="block">\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr] = V(u) W(u) </math> By the [[product rule]], the derivative of the right-hand side is <math display="block">\frac{\mathrm{d}}{\mathrm{d}x} \bigl[V(x) W(x)\bigr] = V(x)w(x) + v(x)W(x)</math> and by integrating we have: <math display="block">\int_{0}^{u} V(x)w(x) + v(x)W(x) \,\mathrm{d}x=V(u) W(u) </math> Thus, the equation from the beginning we get: <math display="block">\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr]= \int_{0}^{u} V(x)w(x) + v(x)W(x) \,\mathrm{d}x </math> Now, we introduce a second integration parameter <math>y</math> for the description of the antiderivatives <math>V(x)</math> and <math>W(x)</math>: : <math>\int_{0}^{1} x\,v(xy) \,\mathrm{d}y = \biggl[V(xy)\biggr]_{y = 0}^{y = 1} = V(x) </math> : <math>\int_{0}^{1} x\,w(xy) \,\mathrm{d}y = \biggl[W(xy)\biggr]_{y = 0}^{y = 1} = W(x) </math> By insertion, a double integral appears: <math display="block">\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr]= \int_{0}^{u} \biggl[\int_{0}^{1} x\,v(xy) \,\mathrm{d}y\biggr]w(x) + v(x)\biggl[\int_{0}^{1} x\,w(xy) \,\mathrm{d}y\biggr] \,\mathrm{d}x </math> Functions that are foreign to the concerned integration parameter can be imported into the inner function as a factor: <math display="block">\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr]= \int_{0}^{u} \biggl[\int_{0}^{1} x\,v(xy) \,w(x) \,\mathrm{d}y\biggr] + \biggl[\int_{0}^{1} x\,v(x)\,w(xy) \,\mathrm{d}y\biggr] \,\mathrm{d}x </math> In the next step, the [[Integral#Properties|sum rule]] is applied to the integrals: <math display="block">\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr]= \int_{0}^{u} \int_{0}^{1} x\,v(xy) \,w(x) + x\,v(x)\,w(xy) \,\mathrm{d}y \,\mathrm{d}x </math> And finally, we use the '''Fubini theorem''' <math display="block">\biggl[\int_{0}^{u} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{u} w(x) \,\mathrm{d}x\biggr]= \int_{0}^{1} \int_{0}^{u} x\,v(xy) \,w(x) + x\,v(x)\,w(xy) \,\mathrm{d}x \,\mathrm{d}y </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)