Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== '''General template''' There are now many other versions of the Hahn–Banach theorem. The general template for the various versions of the Hahn–Banach theorem presented in this article is as follows: :<math>p : X \to \R</math> is a [[sublinear function]] (possibly a [[seminorm]]) on a vector space <math>X,</math> <math>M</math> is a vector subspace of <math>X</math> (possibly closed), and <math>f</math> is a linear functional on <math>M</math> satisfying <math>|f| \leq p</math> on <math>M</math> (and possibly some other conditions). One then concludes that there exists a linear extension <math>F</math> of <math>f</math> to <math>X</math> such that <math>|F| \leq p</math> on <math>X</math> (possibly with additional properties). {{Math theorem | name = Theorem{{sfn|Narici|Beckenstein|2011|pp=177-220}} | math_statement = If <math>D</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in a real or complex vector space <math>X</math> and if <math>f</math> be a linear functional defined on a vector subspace <math>M</math> of <math>X</math> such that <math>|f| \leq 1</math> on <math>M \cap D,</math> then there exists a linear functional <math>F</math> on <math>X</math> extending <math>f</math> such that <math>|F| \leq 1</math> on <math>D.</math> }} ===For seminorms=== {{Math theorem | name = {{visible anchor|Hahn–Banach theorem for seminorms}}{{sfn|Wilansky|2013|pp=18-21}}{{sfn|Narici|Beckenstein|2011|pp=150}} | math_statement = If <math>p : M \to \Reals</math> is a [[seminorm]] defined on a vector subspace <math>M</math> of <math>X,</math> and if <math>q : X \to \Reals</math> is a seminorm on <math>X</math> such that <math>p \leq q\big\vert_M,</math> then there exists a seminorm <math>P : X \to \Reals</math> on <math>X</math> such that <math>P\big\vert_M = p</math> on <math>M</math> and <math>P \leq q</math> on <math>X.</math> }} {{Math proof|title=Proof of the [[#Hahn–Banach theorem for seminorms|Hahn–Banach theorem for seminorms]]|drop=hidden|proof= Let <math>S</math> be the convex hull of <math>\{m \in M : p(m) \leq 1\} \cup \{x \in X : q(x) \leq 1\}.</math> Because <math>S</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in <math>X,</math> its [[Minkowski functional]] <math>P</math> is a seminorm. Then <math>p = P</math> on <math>M</math> and <math>P \leq q</math> on <math>X.</math> }} So for example, suppose that <math>f</math> is a [[bounded linear functional]] defined on a vector subspace <math>M</math> of a [[normed space]] <math>X,</math> so its the [[operator norm]] <math>\|f\|</math> is a non-negative real number. Then the linear functional's [[absolute value]] <math>p := |f|</math> is a seminorm on <math>M</math> and the map <math>q : X \to \Reals</math> defined by <math>q(x) = \|f\| \, \|x\|</math> is a seminorm on <math>X</math> that satisfies <math>p \leq q\big\vert_M</math> on <math>M.</math> The [[#Hahn–Banach theorem for seminorms|Hahn–Banach theorem for seminorms]] guarantees the existence of a seminorm <math>P : X \to \Reals</math> that is equal to <math>|f|</math> on <math>M</math> (since <math>P\big\vert_M = p = |f|</math>) and is bounded above by <math>P(x) \leq \|f\| \, \|x\|</math> everywhere on <math>X</math> (since <math>P \leq q</math>). ===Geometric separation=== {{Math theorem | name = {{visible anchor|Hahn–Banach sandwich theorem}}{{sfn|Narici|Beckenstein|2011|pp=177-220}} | math_statement = Let <math>p : X \to \R</math> be a sublinear function on a real vector space <math>X,</math> let <math>S \subseteq X</math> be any subset of <math>X,</math> and let <math>f : S \to \R</math> be {{em|any}} map. If there exist positive real numbers <math>a</math> and <math>b</math> such that <math display=block>0 \geq \inf_{s \in S} [p(s - a x - b y) - f(s) - a f(x) - b f(y)] \qquad \text{ for all } x, y \in S,</math> then there exists a linear functional <math>F : X \to \R</math> on <math>X</math> such that <math>F \leq p</math> on <math>X</math> and <math>f \leq F \leq p</math> on <math>S.</math> }} ===Maximal dominated linear extension=== {{Math theorem | name = Theorem{{sfn|Narici|Beckenstein|2011|pp=177-220}} | note = Andenaes, 1970 | math_statement = Let <math>p : X \to \R</math> be a sublinear function on a real vector space <math>X,</math> let <math>f : M \to \R</math> be a linear functional on a vector subspace <math>M</math> of <math>X</math> such that <math>f \leq p</math> on <math>M,</math> and let <math>S \subseteq X</math> be any subset of <math>X.</math> Then there exists a linear functional <math>F : X \to \R</math> on <math>X</math> that extends <math>f,</math> satisfies <math>F \leq p</math> on <math>X,</math> and is (pointwise) maximal on <math>S</math> in the following sense: if <math>\widehat{F} : X \to \R</math> is a linear functional on <math>X</math> that extends <math>f</math> and satisfies <math>\widehat{F} \leq p</math> on <math>X,</math> then <math>F \leq \widehat{F}</math> on <math>S</math> implies <math>F = \widehat{F}</math> on <math>S.</math> }} If <math>S = \{s\}</math> is a singleton set (where <math>s \in X</math> is some vector) and if <math>F : X \to \R</math> is such a maximal dominated linear extension of <math>f : M \to \R,</math> then <math>F(s) = \inf_{m \in M} [f(s) + p(s - m)].</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} ===Vector valued Hahn–Banach=== {{See also|Vector-valued Hahn–Banach theorems}} {{Math theorem | name = {{visible anchor|Vector–valued Hahn–Banach theorem}}{{sfn|Narici|Beckenstein|2011|pp=177-220}} | math_statement = If <math>X</math> and <math>Y</math> are vector spaces over the same field and if <math>f : M \to Y</math> is a linear map defined on a vector subspace <math>M</math> of <math>X,</math> then there exists a linear map <math>F : X \to Y</math> that extends <math>f.</math> }} ===Invariant Hahn–Banach=== {{See also|Vector-valued Hahn–Banach theorems}} A set <math>\Gamma</math> of maps <math>X \to X</math> is {{em|{{visible anchor|commutative set of maps|text=commutative}}}} (with respect to [[function composition]] <math>\,\circ\,</math>) if <math>F \circ G = G \circ F</math> for all <math>F, G \in \Gamma.</math> Say that a function <math>f</math> defined on a subset <math>M</math> of <math>X</math> is {{em|{{visible anchor|invariant map|text=<math>\Gamma</math>-invariant}}}} if <math>L(M) \subseteq M</math> and <math>f \circ L = f</math> on <math>M</math> for every <math>L \in \Gamma.</math> {{Math theorem | name = {{visible anchor|An invariant Hahn–Banach theorem}}{{sfn|Rudin|1991|p=141}} | math_statement = Suppose <math>\Gamma</math> is a [[#commutative set of maps|commutative set]] of continuous linear maps from a [[normed space]] <math>X</math> into itself and let <math>f</math> be a continuous linear functional defined some vector subspace <math>M</math> of <math>X</math> that is [[#invariant map|<math>\Gamma</math>-invariant]], which means that <math>L(M) \subseteq M</math> and <math>f \circ L = f</math> on <math>M</math> for every <math>L \in \Gamma.</math> Then <math>f</math> has a continuous linear extension <math>F</math> to all of <math>X</math> that has the same [[operator norm]] <math>\|f\| = \|F\|</math> and is also <math>\Gamma</math>-invariant, meaning that <math>F \circ L = F</math> on <math>X</math> for every <math>L \in \Gamma.</math> }} This theorem may be summarized: :Every [[#invariant map|<math>\Gamma</math>-invariant]] continuous linear functional defined on a vector subspace of a normed space <math>X</math> has a <math>\Gamma</math>-invariant Hahn–Banach extension to all of <math>X.</math>{{sfn|Rudin|1991|p=141}} ===For nonlinear functions=== The following theorem of Mazur–Orlicz (1953) is equivalent to the Hahn–Banach theorem. {{Math theorem | name = {{visible anchor|Mazur–Orlicz theorem}}{{sfn|Narici|Beckenstein|2011|pp=177–220}} | math_statement = Let <math>p : X \to \R</math> be a [[sublinear function]] on a real or complex vector space <math>X,</math> let <math>T</math> be any set, and let <math>R : T \to \R</math> and <math>v : T \to X</math> be any maps. The following statements are equivalent: # there exists a real-valued linear functional <math>F</math> on <math>X</math> such that <math>F \leq p</math> on <math>X</math> and <math>R \leq F \circ v</math> on <math>T</math>; # for any finite sequence <math>s_1, \ldots, s_n</math> of <math>n > 0</math> non-negative real numbers, and any sequence <math>t_1, \ldots, t_n \in T</math> of elements of <math>T,</math> <math display=block>\sum_{i=1}^n s_i R\left(t_i\right) \leq p\left(\sum_{i=1}^n s_i v\left(t_i\right)\right).</math> }} The following theorem characterizes when {{em|any}} scalar function on <math>X</math> (not necessarily linear) has a continuous linear extension to all of <math>X.</math> {{Math theorem | name = Theorem | note = {{visible anchor|The extension principle}}{{sfn|Edwards|1995|pp=124-125}} | math_statement = Let <math>f</math> a scalar-valued function on a subset <math>S</math> of a [[topological vector space]] <math>X.</math> Then there exists a continuous linear functional <math>F</math> on <math>X</math> extending <math>f</math> if and only if there exists a continuous seminorm <math>p</math> on <math>X</math> such that <math display=block>\left|\sum_{i=1}^n a_i f(s_i)\right| \leq p\left(\sum_{i=1}^n a_is_i\right)</math> for all positive integers <math>n</math> and all finite sequences <math>a_1, \ldots, a_n</math> of scalars and elements <math>s_1, \ldots, s_n</math> of <math>S.</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)