Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hankel transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Some Hankel transform pairs == <ref>{{cite book |last=Papoulis |first=Athanasios |title=Systems and Transforms with Applications to Optics |year=1981 |publisher=Krieger Publishing Company |location=Florida USA |isbn=978-0898743586 |pages=140β175}}</ref> {|class="wikitable" ! <math>f(r)</math> ! <math>F_0(k)</math> |- | <math>1</math> | <math>\frac{\delta(k)}{k}</math> |- | <math>\frac{1}{r}</math> | <math>\frac{1}{k}</math> |- | <math>r</math> | <math>-\frac{1}{k^3}</math> |- | <math>r^3</math> | <math>\frac{9}{k^5}</math> |- | <math>r^m</math> | <math>\frac{\, 2^{m+1} \, \Gamma \left( \tfrac{m}{2} + 1 \right) \,}{k^{m+2} \, \Gamma\left( -\tfrac{m}{2} \right)}, \quad -2 < \mathcal{R_e} \{ m \} < -\tfrac{1}{2}</math> |- | <math>\frac{1}{\sqrt{r^2 + z^2\,}}</math> | <math>\frac{\, e^{-k|z|} \,}{k}</math><!-- = \sqrt{ \frac{2|z| \,}{\pi k}}K_{-\tfrac{1}{2}}(k|z|) \, ref Smythe 1968 --> |- | <math>\frac{1}{\, z^2 + r^2 \,}</math> | <math>K_0(kz), \quad z \in \mathbb{C}</math> |- |rowspan="2"| <math>\frac{e^{iar}}{r}</math> | <math>\frac{i}{\, \sqrt{a^2 - k^2 \,} \,}, \quad a > 0, \; k < a</math> |- | <math>\frac{1}{\,\sqrt{k^2 - a^2\,}\,}, \quad a > 0, \; k > a</math> |- | <math>e^{-\frac{1}{2} a^2r^2}</math> | <math>\frac{1}{\,a^2\,} \, e^{-\tfrac{k^2}{2\,a^2}}</math> |- | <math>\frac{1}{r} J_0(lr) \, e^{-sr}</math> | <math>\frac{2}{\, \pi \sqrt{ (k + l)^2 + s^2 \,} \,} K\left( \sqrt{\frac{4kl}{(k + l)^2 + s^2} \,} \right)</math> |- | <math>-r^2 f(r)</math> | <math>\frac{\, \mathrm{d}^2 F_0 \,}{\mathrm{d}k^2} + \frac{1}{k} \frac{\, \mathrm{d} F_0 \,}{\mathrm{d}k}</math> |} {|class="wikitable" ! <math>f(r)</math> ! <math>F_\nu(k)</math> |- | <math>r^s</math> | <math>\frac{2^{s+1}}{\, k^{s+2} \,} \, \frac{\Gamma\left(\tfrac{1}{2}(2 + \nu + s)\right)}{\Gamma(\tfrac{1}{2} (\nu - s))}</math> |- | <math>r^{\nu-2s} \Gamma(s, r^2 h)</math> | <math>\tfrac{1}{2} \left(\tfrac k 2\right)^{2s-\nu-2} \gamma\left(1 - s + \nu, \tfrac{k^2}{4h} \right)</math> |- | <math>e^{-r^2} r^\nu \, U(a, b, r^2)</math> | <math>\frac{\Gamma(2 + \nu - b)}{\, 2\, \Gamma(2 + \nu - b + a)} \left(\tfrac k 2\right)^\nu \, e^{-\frac{k^2}{4} \,} \, _1F_1\left( a, 2 + a - b + \nu, \tfrac{k^2}{4} \right)</math> |- | <math>r^n J_\mu(lr) \, e^{-sr}</math> | Expressable in terms of [[elliptic integral]]s.<ref>{{cite journal | last1 = Kausel | first1 = E. | last2 = Irfan Baig | first2 = M.M. | year = 2012 | title = Laplace transform of products of Bessel functions: A visitation of earlier formulas | journal = Quarterly of Applied Mathematics | volume = 70 | pages = 77β97 | hdl = 1721.1/78923 | url = http://dspace.mit.edu/bitstream/1721.1/78923/1/Kausel_Baig.pdf | doi = 10.1090/s0033-569x-2011-01239-2 | doi-access = free}}</ref> |- | <math>-r^2 f(r)</math> | <math>\frac{\mathrm{d}^2 F_\nu}{\mathrm{d}k^2} + \frac{1}{k} \frac{\, \mathrm{d} F_\nu \,}{\mathrm{d}k} - \frac{\nu^2}{k^2} \, F_\nu</math> |} {{math|''K<sub>n</sub>''(''z'')}} is a [[modified Bessel function of the second kind]]. {{math|''K''(''z'')}} is the [[complete elliptic integral of the first kind]]. The expression : <math>\frac{\, \mathrm{d}^2 F_0 \,}{\mathrm{d}k^2} + \frac{1}{k} \frac{\, \mathrm{d} F_0 \,}{\mathrm{d}k}</math> coincides with the expression for the [[Laplace operator]] in [[polar coordinates]] {{math|( ''k'', ''ΞΈ'' )}} applied to a spherically symmetric function {{math| ''F''<sub>0</sub>(''k'') .}} The Hankel transform of [[Zernike polynomial]]s are essentially Bessel Functions (Noll 1976): : <math>R_n^m(r) = (-1)^{\frac{n-m}{2}} \int_0^\infty J_{n+1}(k) J_m(kr) \,\mathrm{d}k</math> for even {{math|''n'' β ''m'' β₯ 0}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)