Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hopf algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Hopf algebras in braided monoidal categories == The definition of Hopf algebra is naturally extended to arbitrary [[braided monoidal category|braided monoidal categories]].{{sfn|Turaev|Virelizier|2017|loc=6.2}}{{sfn|Akbarov|2009|p=482}} A Hopf algebra in such a category <math>(C,\otimes,I,\alpha,\lambda,\rho,\gamma)</math> is a sextuple <math>(H,\nabla,\eta,\Delta,\varepsilon,S)</math> where <math>H</math> is an object in <math>C</math>, and : <math>\nabla:H\otimes H\to H</math> (multiplication), : <math>\eta:I\to H</math> (unit), : <math>\Delta:H\to H\otimes H</math> (comultiplication), : <math>\varepsilon:H\to I</math> (counit), : <math>S:H\to H</math> (antipode) β are morphisms in <math>C</math> such that :1) the triple <math>(H,\nabla,\eta)</math> is a [[Monoid (category theory)|monoid]] in the monoidal category <math>(C,\otimes,I,\alpha,\lambda,\rho,\gamma)</math>, i.e. the following diagrams are commutative:{{efn|name=left-and-right-units|Here <math>\alpha_{H,H,H}:(H\otimes H)\otimes H\to H\otimes (H\otimes H)</math>, <math>\lambda_H:I\otimes H\to H</math>, <math>\rho_H:H\otimes I\to H</math> are the natural transformations of associativity, and of the left and the right units in the monoidal category <math>(C,\otimes,I,\alpha,\lambda,\rho,\gamma)</math>.}} <div style="text-align: center;"> [[File:Minoid.png|600px|monoid in a monoidal category]] </div> :2) the triple <math>(H,\Delta,\varepsilon)</math> is a [[Monoid (category theory)|comonoid]] in the monoidal category <math>(C,\otimes,I,\alpha,\lambda,\rho,\gamma)</math>, i.e. the following diagrams are commutative:{{efn|name=left-and-right-units}} <div style="text-align: center;"> [[File:Cominoid.png|600px|comonoid in a monoidal category]] </div> :3) the structures of monoid and comonoid on <math>H</math> are compatible: the multiplication <math>\nabla</math> and the unit <math>\eta</math> are morphisms of comonoids, and (this is equivalent in this situation) at the same time the comultiplication <math>\Delta</math> and the counit <math>\varepsilon</math> are morphisms of monoids; this means that the following diagrams must be commutative: <div style="text-align: center;"> [[File:Multiplication-comultiplication.png|600px|coherence between multiplication and comultiplication]] </div> <div style="text-align: center;"> [[File:Unit-counit.png|350px|unit and counit in bialgebras]] </div> <div style="text-align: center;"> [[File:Uinit-counit-1.png|150px|unit and counit in bialgebras]] </div> : where <math>\lambda_I:I\otimes I\to I</math> is the left unit morphism in <math>C</math>, and <math>\theta</math> the natural transformation of functors <math>(A\otimes B)\otimes (C\otimes D)\stackrel{\theta}{\rightarrowtail} (A\otimes C)\otimes (B\otimes D)</math> which is unique in the class of natural transformations of functors composed from the structural transformations (associativity, left and right units, transposition, and their inverses) in the category <math>C</math>. The quintuple <math>(H,\nabla,\eta,\Delta,\varepsilon)</math> with the properties 1),2),3) is called a '''bialgebra''' in the category <math>(C,\otimes,I,\alpha,\lambda,\rho,\gamma)</math>; :4) the diagram of antipode is commutative: <div style="text-align: center;"> [[File:Antipode-1.png|300px|unit and counit in bialgebras]] </div> The typical examples are the following. * '''Groups'''. In the monoidal category <math>(\text{Set},\times,1)</math> of [[set (mathematics)|sets]] (with the [[cartesian product]] <math>\times</math> as the tensor product, and an arbitrary singletone, say, <math>1=\{\varnothing\}</math>, as the unit object) a triple <math>(H,\nabla,\eta)</math> is a [[Monoid (category theory)|monoid in the categorical sense]] if and only if it is a [[monoid|monoid in the usual algebraic sense]], i.e. if the operations <math>\nabla(x,y)=x\cdot y</math> and <math>\eta(1)</math> behave like usual multiplication and unit in <math>H</math> (but possibly without the invertibility of elements <math>x\in H</math>). At the same time, a triple <math>(H,\Delta,\varepsilon)</math> is a comonoid in the categorical sense iff <math>\Delta</math> is the diagonal operation <math>\Delta(x)=(x,x)</math> (and the operation <math>\varepsilon</math> is defined uniquely as well: <math>\varepsilon(x)=\varnothing</math>). And any such a structure of comonoid <math>(H,\Delta,\varepsilon)</math> is compatible with any structure of monoid <math>(H,\nabla,\eta)</math> in the sense that the diagrams in the section 3 of the definition always commute. As a corollary, each monoid <math>(H,\nabla,\eta)</math> in <math>(\text{Set},\times,1)</math> can naturally be considered as a bialgebra <math>(H,\nabla,\eta,\Delta,\varepsilon)</math> in <math>(\text{Set},\times,1)</math>, and vice versa. The existence of the antipode <math>S:H\to H</math> for such a bialgebra <math>(H,\nabla,\eta,\Delta,\varepsilon)</math> means exactly that every element <math>x\in H</math> has an inverse element <math>x^{-1}\in H</math> with respect to the multiplication <math>\nabla(x,y)=x\cdot y</math>. Thus, in the category of sets <math>(\text{Set},\times,1)</math> Hopf algebras are exactly [[group (mathematics)|groups]] in the usual algebraic sense. * '''Classical Hopf algebras'''. In the special case when <math>(C,\otimes,s,I)</math> is the category of vector spaces over a given field <math>K</math>, the Hopf algebras in <math>(C,\otimes,s,I)</math> are exactly the classical Hopf algebras [[#Formal definition|described above]]. * '''Functional algebras on groups'''. The standard [[Stereotype algebra#Examples|functional algebras]] <math>{\mathcal C}(G)</math>, <math>{\mathcal E}(G)</math>, <math>{\mathcal O}(G)</math>, <math>{\mathcal P}(G)</math> (of continuous, smooth, holomorphic, regular functions) on groups are Hopf algebras in the category ('''Ste''',<math>\odot</math>) of [[stereotype space]]s,{{sfn|Akbarov|2003|loc=10.3}} * '''Group algebras'''. The [[stereotype group algebra]]s <math>{\mathcal C}^\star(G)</math>, <math>{\mathcal E}^\star(G)</math>, <math>{\mathcal O}^\star(G)</math>, <math>{\mathcal P}^\star(G)</math> (of measures, distributions, analytic functionals and currents) on groups are Hopf algebras in the category ('''Ste''',<math>\circledast</math>) of [[stereotype space]]s.{{sfn|Akbarov|2003|loc=10.3}} These Hopf algebras are used in the [[Pontryagin duality#Dualities for non-commutative topological groups|duality theories for non-commutative groups]].{{sfn|Akbarov|2009}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)