Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Huffman coding
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Huffman template algorithm === Most often, the weights used in implementations of Huffman coding represent numeric probabilities, but the algorithm given above does not require this; it requires only that the weights form a [[total order|totally ordered]] [[Monoid#Commutative monoid|commutative monoid]], meaning a way to order weights and to add them. The '''Huffman template algorithm''' enables one to use any kind of weights (costs, frequencies, pairs of weights, non-numerical weights) and one of many combining methods (not just addition). Such algorithms can solve other minimization problems, such as minimizing <math>\max_i\left[w_{i}+\mathrm{length}\left(c_{i}\right)\right]</math>, a problem first applied to circuit design.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)