Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Image (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiple subsets of domain or codomain === For function <math>f : X \to Y</math> and subsets <math>A, B \subseteq X</math> and <math>S, T \subseteq Y,</math> the following properties hold: {| class="wikitable" |- ! Image ! Preimage |- |<math>A \subseteq B \,\text{ implies }\, f(A) \subseteq f(B)</math> |<math>S \subseteq T \,\text{ implies }\, f^{-1}(S) \subseteq f^{-1}(T)</math> |- |<math>f(A \cup B) = f(A) \cup f(B)</math><ref name="lee-2010-p388" /><ref name="kelley-1985">{{harvnb|Kelley|1985|p=[{{Google books|plainurl=y|id=-goleb9Ov3oC|page=85|text=The image of the union of a family of subsets of X is the union of the images, but, in general, the image of the intersection is not the intersection of the images}} 85]}}</ref> |<math>f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)</math> |- |<math>f(A \cap B) \subseteq f(A) \cap f(B)</math><ref name="lee-2010-p388" /><ref name="kelley-1985" /><br>(equal if <math>f</math> is injective<ref name="munkres-2000-p21">See {{harvnb|Munkres|2000|p=21}}</ref>) |<math>f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)</math> |- |<math>f(A \setminus B) \supseteq f(A) \setminus f(B)</math><ref name="lee-2010-p388" /><br>(equal if <math>f</math> is injective<ref name="munkres-2000-p21" />) |<math>f^{-1}(S \setminus T) = f^{-1}(S) \setminus f^{-1}(T)</math><ref name="lee-2010-p388" /> |- |<math>f\left(A \triangle B\right) \supseteq f(A) \triangle f(B)</math><br>(equal if <math>f</math> is injective) |<math>f^{-1}\left(S \triangle T\right) = f^{-1}(S) \triangle f^{-1}(T)</math> |- |} The results relating images and preimages to the ([[Boolean algebra (structure)|Boolean]]) algebra of [[Intersection (set theory)|intersection]] and [[Union (set theory)|union]] work for any collection of subsets, not just for pairs of subsets: * <math>f\left(\bigcup_{s\in S}A_s\right) = \bigcup_{s\in S} f\left(A_s\right)</math> * <math>f\left(\bigcap_{s\in S}A_s\right) \subseteq \bigcap_{s\in S} f\left(A_s\right)</math> * <math>f^{-1}\left(\bigcup_{s\in S}B_s\right) = \bigcup_{s\in S} f^{-1}\left(B_s\right)</math> * <math>f^{-1}\left(\bigcap_{s\in S}B_s\right) = \bigcap_{s\in S} f^{-1}\left(B_s\right)</math> (Here, <math>S</math> can be infinite, even [[uncountably infinite]].) With respect to the algebra of subsets described above, the inverse image function is a [[lattice homomorphism]], while the image function is only a [[semilattice]] homomorphism (that is, it does not always preserve intersections).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)