Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infinitesimal strain theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relation to infinitesimal rotation tensor {{anchor|Infinitesimal rotation tensor}} == {{see also|Spin tensor (mechanics)}} The infinitesimal strain tensor is defined as <math display="block"> \boldsymbol{\varepsilon} = \frac{1}{2} [\boldsymbol{\nabla}\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})^T]</math> Therefore the displacement gradient can be expressed as <math display="block"> \boldsymbol{\nabla}\mathbf{u} = \boldsymbol{\varepsilon} + \boldsymbol{W}</math> where <math display="block"> \boldsymbol{W} := \frac{1}{2} [\boldsymbol{\nabla}\mathbf{u} - (\boldsymbol{\nabla}\mathbf{u})^T]</math> The quantity <math>\boldsymbol{W}</math> is the '''infinitesimal rotation tensor''' or '''infinitesimal angular displacement tensor''' (related to the ''[[infinitesimal rotation matrix]]''). This tensor is [[skew symmetric]]. For infinitesimal deformations the scalar components of <math>\boldsymbol{W}</math> satisfy the condition <math>|W_{ij}| \ll 1</math>. Note that the displacement gradient is small only if {{em|both}} the strain tensor and the rotation tensor are infinitesimal. === The axial vector === A skew symmetric second-order tensor has three independent scalar components. These three components are used to define an '''axial vector''', <math>\mathbf{w}</math>, as follows <math display="block"> W_{ij} = -\epsilon_{ijk}~w_k ~;~~ w_i = -\tfrac{1}{2}~\epsilon_{ijk}~W_{jk} </math> where <math>\epsilon_{ijk}</math> is the [[permutation symbol]]. In matrix form <math display="block"> \underline{\underline{\boldsymbol{W}}} = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0\end{bmatrix} ~;~~ \underline{\mathbf{w}} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} </math> The axial vector is also called the '''infinitesimal rotation vector'''. The rotation vector is related to the displacement gradient by the relation <math display="block"> \mathbf{w} = \tfrac{1}{2}~ \boldsymbol{\nabla} \times \mathbf{u} </math> In index notation <math display="block"> w_i = \tfrac{1}{2}~\epsilon_{ijk}~u_{k,j} </math> If <math>\lVert\boldsymbol{W}\rVert \ll 1 </math> and <math>\boldsymbol{\varepsilon} = \boldsymbol{0}</math> then the material undergoes an approximate rigid body rotation of magnitude <math>|\mathbf{w}|</math> around the vector <math>\mathbf{w}</math>. === Relation between the strain tensor and the rotation vector === Given a continuous, single-valued displacement field <math>\mathbf{u}</math> and the corresponding infinitesimal strain tensor <math>\boldsymbol{\varepsilon}</math>, we have (see [[Tensor derivative (continuum mechanics)]]) <math display="block">\boldsymbol{\nabla}\times\boldsymbol{\varepsilon} = e_{ijk}~\varepsilon_{lj,i}~\mathbf{e}_k\otimes\mathbf{e}_l = \tfrac{1}{2}~e_{ijk}~[u_{l,ji} + u_{j,li}]~\mathbf{e}_k\otimes\mathbf{e}_l </math> Since a change in the order of differentiation does not change the result, <math>u_{l,ji} = u_{l,ij}</math>. Therefore <math display="block"> e_{ijk} u_{l,ji} = (e_{12k}+e_{21k}) u_{l,12} + (e_{13k}+e_{31k}) u_{l,13} + (e_{23k} + e_{32k}) u_{l,32} = 0 </math> Also <math display="block"> \tfrac{1}{2}~e_{ijk}~u_{j,li} = \left(\tfrac{1}{2}~e_{ijk}~u_{j,i}\right)_{,l} = \left(\tfrac{1}{2} ~ e_{kij}~u_{j,i}\right)_{,l} = w_{k,l} </math> Hence <math display="block"> \boldsymbol{\nabla} \times \boldsymbol{\varepsilon} = w_{k,l}~\mathbf{e}_k\otimes\mathbf{e}_l = \boldsymbol{\nabla}\mathbf{w} </math> === Relation between rotation tensor and rotation vector === From an important identity regarding the [[Tensor derivative (continuum mechanics)|curl of a tensor]] we know that for a continuous, single-valued displacement field <math>\mathbf{u}</math>, <math display="block"> \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\mathbf{u}) = \boldsymbol{0}. </math> Since <math>\boldsymbol{\nabla}\mathbf{u} = \boldsymbol{\varepsilon} + \boldsymbol{W}</math> we have <math display="block"> \boldsymbol{\nabla}\times\boldsymbol{W} = -\boldsymbol{\nabla}\times\boldsymbol{\varepsilon} = - \boldsymbol{\nabla} \mathbf{w}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)