Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Interval (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Definitions ==== The concept of intervals can be defined in arbitrary [[partially ordered set]]s or more generally, in arbitrary [[preordered set]]s. For a [[preordered set]] <math>(X,\lesssim)</math> and two elements <math>a,b\in X,</math> one similarly defines the intervals<ref name="Vind">{{cite book |last=Vind |first=Karl |title=Independence, additivity, uncertainty |language=en |series=Studies in Economic Theory |volume=14 |publisher=Springer |location=Berlin |date=2003 |isbn=978-3-540-41683-8 |doi=10.1007/978-3-540-24757-9 |zbl=1080.91001 }}</ref>{{rp|11, Definition 11}} :<math>(a,b) =\{x\in X \mid a<x<b\},</math> :<math>[a,b] =\{x\in X \mid a\lesssim x\lesssim b\},</math> :<math>(a,b] =\{x\in X \mid a<x\lesssim b\},</math> :<math>[a,b) =\{x\in X \mid a\lesssim x<b\},</math> :<math>(a,\infty) =\{x\in X \mid a<x\},</math> :<math>[a,\infty) =\{x\in X \mid a\lesssim x\},</math> :<math>(-\infty,b) =\{x\in X \mid x<b\},</math> :<math>(-\infty,b] =\{x\in X \mid x\lesssim b\},</math> :<math>(-\infty,\infty) =X,</math> where <math>x<y</math> means <math>x\lesssim y\not\lesssim x.</math> Actually, the intervals with single or no endpoints are the same as the intervals with two endpoints in the larger preordered set :<math>\bar X=X\sqcup\{-\infty,\infty\}</math> :<math>-\infty<x<\infty\qquad(\forall x\in X)</math> defined by adding new smallest and greatest elements (even if there were ones), which are subsets of <math>X.</math> In the case of <math>X=\mathbb R</math> one may take <math>\bar\mathbb R</math> to be the [[extended real line]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)