Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Recurrence relations=== As discussed above, the Legendre polynomials obey the three-term recurrence relation known as Bonnet's recursion formula given by <math display="block"> (n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)</math> and <math display="block"> \frac{x^2-1}{n} \frac{d}{dx} P_n(x) = xP_n(x) - P_{n-1}(x) </math> or, with the alternative expression, which also holds at the endpoints <math display="block"> \frac{d}{dx} P_{n+1}(x) = (n+1)P_n(x) + x \frac{d}{dx}P_{n}(x) \,.</math> Useful for the integration of Legendre polynomials is <math display="block">(2n+1) P_n(x) = \frac{d}{dx} \bigl( P_{n+1}(x) - P_{n-1}(x) \bigr) \,.</math> From the above one can see also that <math display="block">\frac{d}{dx} P_{n+1}(x) = (2n+1) P_n(x) + \bigl(2(n-2)+1\bigr) P_{n-2}(x) + \bigl(2(n-4)+1\bigr) P_{n-4}(x) + \cdots</math> or equivalently <math display="block">\frac{d}{dx} P_{n+1}(x) = \frac{2 P_n(x)}{\left\| P_n \right\|^2} + \frac{2 P_{n-2}(x)}{\left\| P_{n-2} \right\|^2} + \cdots</math> where {{math|{{norm|''P<sub>n</sub>''}}}} is the norm over the interval {{math|β1 β€ ''x'' β€ 1}} <math display="block">\| P_n \| = \sqrt{\int_{-1}^1 \bigl(P_n(x)\bigr)^2 \,dx} = \sqrt{\frac{2}{2 n + 1}} \,.</math>More generally, all orders of derivatives are expressible as a sum of Legendre polynomials:<ref>{{Cite journal |last=Doha |first=E. H. |date=1991-01-01 |title=The coefficients of differentiated expansions and derivatives of ultraspherical polynomials |url=https://dx.doi.org/10.1016/0898-1221%2891%2990089-M |journal=Computers & Mathematics with Applications |volume=21 |issue=2 |pages=115β122 |doi=10.1016/0898-1221(91)90089-M |issn=0898-1221}}</ref><math display="block">\begin{aligned} &\begin{aligned} & \frac{d^q}{dx^q} P_{q+2 j}(x)=\frac{2^{q-1}}{(q-1)!} \sum_{i=0}^j(4 i+1) \frac{(q+j-i-1)!\Gamma\left(q+j+i+\frac{1}{2}\right)}{(j-i)!\Gamma(j+i+3 / 2)} P_{2 i}(x) \\ & \quad=\frac{1}{2^{q-2}(q-1)!} \sum_{i=0}^j(4 i+1) \frac{(q+j-i-1)!(2 q+2 j+2 i-1)!}{(j-i)!(2 j+2 i+2)!} \frac{(j+i+1)!}{(q+j+i-1)!} P_{2 i}(x) \end{aligned}\\ &\begin{aligned} & \frac{d^q}{dx^q} P_{q+2 j+1}(x)=\frac{2^{q-1}}{(q-1)!} \sum_{i=0}^j(4 i+3) \frac{(q+j-i-1)!\Gamma(q+j+i+3 / 2)}{(j-i)!\Gamma(j+i+5 / 2)} P_{2 i+1}(x) \\ & \quad=\frac{1}{2^{q-2}(q-1)!} \sum_{i=0}^j(4 i+3) \frac{(q+j-i-1)!(2 q+2 j+2 i+1)!}{(j-i)!(2 j+2 i+4)!} \frac{(j+i+2)!}{(q+j+i)!} P_{2 i+1}(x) \end{aligned} \end{aligned}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)