Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Liquid-propellant rocket
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Ignition== Ignition can be performed in many ways, but perhaps more so with liquid propellants than other rockets a consistent and significant ignitions source is required; a delay of ignition (in some cases as small as a few tens of milliseconds) can cause overpressure of the chamber due to excess propellant. A [[hard start]] can even cause an engine to explode. Generally, ignition systems try to apply flames across the injector surface, with a mass flow of approximately 1% of the full mass flow of the chamber. Safety interlocks are sometimes used to ensure the presence of an ignition source before the main valves open; however reliability of the interlocks can in some cases be lower than the ignition system. Thus it depends on whether the system must fail safe, or whether overall mission success is more important. Interlocks are rarely used for upper, uncrewed stages where failure of the interlock would cause loss of mission, but are present on the RS-25 engine, to shut the engines down prior to liftoff of the Space Shuttle. In addition, detection of successful ignition of the igniter is surprisingly difficult, some systems use thin wires that are cut by the flames, pressure sensors have also seen some use. Methods of ignition include [[Pyrotechnic initiator|pyrotechnic]], electrical (spark or hot wire), and chemical. [[Hypergolic]] propellants have the advantage of self igniting, reliably and with less chance of hard starts. In the 1940s, the Russians began to start engines with hypergols, to then switch over to the primary propellants after ignition. This was also used on the American [[F-1 rocket engine]] on the [[Apollo program]]. Ignition with a [[pyrophoric]] agent: [[Triethylaluminium]] ignites on contact with air and will ignite and/or decompose on contact with water, and with any other oxidizer—it is one of the few substances sufficiently pyrophoric to ignite on contact with cryogenic [[liquid oxygen]]. The [[enthalpy of combustion]], Δ<sub>c</sub>H°, is {{cvt|-5105.70|±|2.90|kJ/mol}}. Its easy ignition makes it particularly desirable as a [[rocket engine]] [[Pyrotechnic initiator|ignitor]]. May be used in conjunction with [[triethylborane]] to create triethylaluminum-triethylborane, better known as TEA-TEB.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)