Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Log-normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Alternative parameterizations === In addition to the characterization by <math>\mu, \sigma</math> or <math>\mu^*, \sigma^*</math>, here are multiple ways how the log-normal distribution can be parameterized. [[ProbOnto]], the knowledge base and ontology of [[probability distribution]]s<ref>{{cite web | url = http://www.probonto.org | title = ProbOnto |access-date = 1 July 2017}}</ref><ref>{{cite journal | pmid = 27153608 | doi = 10.1093/bioinformatics/btw170 | pmc = 5013898 | volume = 32 | issue = 17 | pages = 2719–2721 | title = ProbOnto: ontology and knowledge base of probability distributions | year = 2016 | journal = Bioinformatics | last1 = Swat | first1 = MJ | last2 = Grenon | first2 = P | last3 = Wimalaratne | first3 = S}}</ref> lists seven such forms: [[File:LogNormal17.jpg|thumb|400px|Overview of parameterizations of the log-normal distributions.]] * {{math|LogNormal1(''μ'',''σ'')}} with [[mean]], {{math|''μ''}}, and [[standard deviation]], {{math|''σ''}}, both on the log-scale <ref name="Forbes">Forbes et al. Probability Distributions (2011), John Wiley & Sons, Inc.</ref> <math display="block">P(x;\boldsymbol\mu,\boldsymbol\sigma) = \frac{1}{x \sigma \sqrt{2 \pi}} \exp\left[-\frac{(\ln x - \mu)^2}{2 \sigma^2}\right]</math> * {{math|LogNormal2(''μ'',''υ'')}} with mean, {{math|''μ''}}, and variance, {{math|''υ''}}, both on the log-scale <math display="block">P(x;\boldsymbol\mu,\boldsymbol {v}) = \frac{1}{x \sqrt{v} \sqrt{2 \pi}} \exp\left[-\frac{(\ln x - \mu)^2}{2 v}\right]</math> * {{math|LogNormal3(''m'',''σ'')}} with [[median]], {{math|''m''}}, on the natural scale and standard deviation, {{math|''σ''}}, on the log-scale<ref name="Forbes" /> <math display="block">P(x;\boldsymbol m,\boldsymbol \sigma) =\frac{1}{x \sigma \sqrt{2 \pi}} \exp\left[-\frac{\ln^2(x/m)}{2 \sigma^2}\right]</math> * {{math|LogNormal4(''m'',cv)}} with median, {{math|''m''}}, and [[coefficient of variation]], {{math|cv}}, both on the natural scale <math display="block">P(x;\boldsymbol m,\boldsymbol {cv}) = \frac{1}{x \sqrt{\ln(cv^2+1)} \sqrt{2 \pi}} \exp\left[-\frac{\ln^2(x/m)}{2\ln(cv^2+1)}\right]</math> * {{math|LogNormal5(''μ'',''τ'')}} with mean, {{math|''μ''}}, and [[Precision (statistics)|precision]], {{math|''τ''}}, both on the log-scale<ref>Lunn, D. (2012). The BUGS book: a practical introduction to Bayesian analysis. Texts in statistical science. CRC Press.</ref> <math display="block">P(x;\boldsymbol\mu,\boldsymbol \tau) = \sqrt{\frac{\tau}{2 \pi}} \frac{1}{x} \exp\left[-\frac{\tau}{2}(\ln x-\mu)^2\right]</math> * {{math|LogNormal6(''m'',''σ<sub>g</sub>'')}} with median, {{math|''m''}}, and [[geometric standard deviation]], {{math|''σ<sub>g</sub>''}}, both on the natural scale<ref>{{cite journal | last1 = Limpert | first1 = E. | last2 = Stahel | first2 = W. A. | last3 = Abbt | first3 = M. | year = 2001 | title = Log-normal distributions across the sciences: Keys and clues | journal = BioScience | volume = 51 | issue = 5 | pages = 341–352 | doi = 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 | doi-access = free }}</ref> <math display="block"> P(x;\boldsymbol m,\boldsymbol {\sigma_g}) = \frac{1}{x \sqrt{2 \pi} \, \ln\sigma_g} \exp\left[-\frac{\ln^2(x/m)}{2 \ln^2(\sigma_g)}\right]</math> * {{math|LogNormal7(''μ<sub>N</sub>'',''σ<sub>N</sub>'')}} with mean, {{math|''μ<sub>N</sub>''}}, and standard deviation, {{math|''σ<sub>N</sub>''}}, both on the natural scale<ref>{{cite journal | last1 = Nyberg | first1 = J. | display-authors = etal | year = 2012 | title = PopED – An extended, parallelized, population optimal design tool | journal = Comput Methods Programs Biomed | volume = 108 | issue = 2 | pages = 789–805 | doi = 10.1016/j.cmpb.2012.05.005 | pmid = 22640817 }}</ref> <math display="block">P(x;\boldsymbol {\mu_N},\boldsymbol {\sigma_N}) = \frac{1}{x \sqrt{2 \pi \ln\left(1+\sigma_N^2/\mu_N^2\right)}} \exp\left[-\frac{\left( \ln x - \ln\frac{\mu_N}{\sqrt{1 + \sigma_N^2/\mu_N^2}}\right)^2}{2 \ln\left(1 + \frac{\sigma_N^2}{\mu_N^2}\right)}\right]</math> ==== Examples for re-parameterization ==== Consider the situation when one would like to run a model using two different optimal design tools, for example PFIM<ref>{{cite journal | last1 = Retout | first1 = S | last2 = Duffull | first2 = S | last3 = Mentré | first3 = F | year = 2001 | title = Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs | journal = Comp Meth Pro Biomed | volume = 65 | issue = 2 | pages = 141–151 | doi = 10.1016/S0169-2607(00)00117-6 | pmid = 11275334 }}</ref> and PopED.<ref>The PopED Development Team (2016). PopED Manual, Release version 2.13. Technical report, Uppsala University.</ref> The former supports the LN2, the latter LN7 parameterization, respectively. Therefore, the re-parameterization is required, otherwise the two tools would produce different results. For the transition <math>\operatorname{LN2}(\mu, v) \to \operatorname{LN7}(\mu_N, \sigma_N)</math> following formulas hold <math display="inline">\mu_N = \exp(\mu+v/2) </math> and <math display="inline">\sigma_N = \exp(\mu+v/2)\sqrt{\exp(v)-1}</math>. For the transition <math>\operatorname{LN7}(\mu_N, \sigma_N) \to \operatorname{LN2}(\mu, v)</math> following formulas hold <math display="inline">\mu = \ln \mu_N - \frac{1}{2} v </math> and <math display="inline"> v = \ln(1+\sigma_N^2/\mu_N^2)</math>. All remaining re-parameterisation formulas can be found in the specification document on the project website.<ref name="probontoWebsite">ProbOnto website, URL: http://probonto.org</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)