Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
M-theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===BFSS matrix model=== {{main article|Matrix theory (physics)}} In mathematics, a [[matrix (mathematics)|matrix]] is a rectangular array of numbers or other data. In physics, a [[matrix theory (physics)|matrix model]] is a particular kind of physical theory whose mathematical formulation involves the notion of a matrix in an important way. A matrix model describes the behavior of a set of matrices within the framework of quantum mechanics.<ref name="Banks et al. 1997">Banks et al. 1997</ref><ref name="Connes, Douglas, and Schwarz 1998">Connes, Douglas, and Schwarz 1998</ref> One important{{why|date=December 2016}} example of a matrix model is the [[BFSS matrix model]] proposed by [[Tom Banks (physicist)|Tom Banks]], [[Willy Fischler]], [[Stephen Shenker]], and [[Leonard Susskind]] in 1997. This theory describes the behavior of a set of nine large matrices. In their original paper, these authors showed, among other things, that the low energy limit of this matrix model is described by eleven-dimensional supergravity. These calculations led them to propose that the BFSS matrix model is exactly equivalent to M-theory. The BFSS matrix model can therefore be used as a prototype for a correct formulation of M-theory and a tool for investigating the properties of M-theory in a relatively simple setting.<ref name="Banks et al. 1997"/>{{clarify|sufficiency is established, but necessity is unclear for the reader--should be explicitly mentioned|date=December 2016}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)