Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orbital elements
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Euler angle transformations == The angles {{math|Ω}}, ''{{mvar|i}}'', ''{{mvar|ω}}'' are the [[Euler angles]] (corresponding to ''{{mvar|α}}'', ''{{mvar|β}}'', ''{{mvar|γ}}'' in the notation used in that article) characterizing the orientation of the coordinate system {{block indent|em=1.5|text='''{{math|x̂}}''', '''{{math|ŷ}}''', '''{{math|ẑ}}''' from the inertial coordinate frame '''{{math|Î}}''', '''{{math|Ĵ}}''', '''{{math|K̂}}'''}} where: * '''{{math|Î}}''', '''{{math|Ĵ}}''' is in the equatorial plane of the central body. '''{{math|Î}}''' is in the direction of the vernal equinox. '''{{math|Ĵ}}''' is perpendicular to '''{{math|Î}}''' and with '''{{math|Î}}''' defines the reference plane. '''{{math|K̂}}''' is perpendicular to the reference plane. Orbital elements of bodies (planets, comets, asteroids, ...) in the Solar System usually the [[ecliptic]] as that plane. * '''{{math|x̂}}''', '''{{math|ŷ}}''' are in the orbital plane and with '''{{math|x̂}}''' in the direction to the [[pericenter]] ([[periapsis]]). '''{{math|ẑ}}''' is perpendicular to the plane of the orbit. '''{{math|ŷ}}''' is mutually perpendicular to '''{{math|x̂}}''' and '''{{math|ẑ}}'''. Then, the transformation from the '''{{math|Î}}''', '''{{math|Ĵ}}''', '''{{math|K̂}}''' coordinate frame to the '''{{math|x̂}}''', '''{{math|ŷ}}''', '''{{math|ẑ}}''' frame with the Euler angles {{math|Ω}}, ''{{mvar|i}}'', ''{{mvar|ω}}'' is: <math display="block">\begin{align} x_1 &= \cos \Omega \cdot \cos \omega - \sin \Omega \cdot \cos i \cdot \sin \omega\ ;\\ x_2 &= \sin \Omega \cdot \cos \omega + \cos \Omega \cdot \cos i \cdot \sin \omega\ ;\\ x_3 &= \sin i \cdot \sin \omega ;\\ \, \\ y_1 &=-\cos \Omega \cdot \sin \omega - \sin \Omega \cdot \cos i \cdot \cos \omega\ ;\\ y_2 &=-\sin \Omega \cdot \sin \omega + \cos \Omega \cdot \cos i \cdot \cos \omega\ ;\\ y_3 &= \sin i \cdot \cos \omega\ ;\\ \, \\ z_1 &= \sin i \cdot \sin \Omega\ ;\\ z_2 &=-\sin i \cdot \cos \Omega\ ;\\ z_3 &= \cos i\ ;\\ \end{align}</math> <math display="block">\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix} = \begin{bmatrix} \cos\omega & \sin\omega & 0 \\ -\sin\omega & \cos\omega& 0 \\ 0 & 0 & 1 \end{bmatrix} \, \begin{bmatrix} 1 & 0 &0 \\ 0 & \cos i & \sin i\\ 0 & -\sin i & \cos i \end{bmatrix} \, \begin{bmatrix} \cos\Omega & \sin\Omega & 0 \\ -\sin\Omega & \cos\Omega& 0 \\ 0 & 0 & 1 \end{bmatrix}\,; </math> where <math display="block">\begin{align} \mathbf\hat{x} &= x_1\mathbf\hat{I} + x_2\mathbf\hat{J} + x_3\mathbf\hat{K} ~;\\ \mathbf\hat{y} &= y_1\mathbf\hat{I} + y_2\mathbf\hat{J} + y_3\mathbf\hat{K} ~;\\ \mathbf\hat{z} &= z_1\mathbf\hat{I} + z_2\mathbf\hat{J} + z_3\mathbf\hat{K} ~.\\ \end{align}</math> The inverse transformation, which computes the 3 coordinates in the I-J-K system given the 3 (or 2) coordinates in the x-y-z system, is represented by the inverse matrix. According to the rules of [[Invertible matrix|matrix algebra]], the inverse matrix of the product of the 3 rotation matrices is obtained by inverting the order of the three matrices and switching the signs of the three Euler angles. That is, <math display="block">\begin{bmatrix} i_1 & i_2 & i_3 \\ j_1 & j_2 & j_3 \\ k_1 & k_2 & k_3 \end{bmatrix} = \begin{bmatrix} \cos\Omega & -\sin\Omega & 0 \\ \sin\Omega & \cos\Omega& 0 \\ 0 & 0 & 1 \end{bmatrix} \, \begin{bmatrix} 1 & 0 &0 \\ 0 & \cos i & -\sin i\\ 0 & \sin i & \cos i \end{bmatrix} \, \begin{bmatrix} \cos\omega & -\sin\omega & 0 \\ \sin\omega & \cos\omega& 0 \\ 0 & 0 & 1 \end{bmatrix}\,; </math> where <math display="block">\begin{align} \mathbf\hat{I} &= i_1\mathbf\hat{x} + i_2\mathbf\hat{y} + i_3\mathbf\hat{z} ~;\\ \mathbf\hat{J} &= j_1\mathbf\hat{x} + j_2\mathbf\hat{y} + j_3\mathbf\hat{z} ~;\\ \mathbf\hat{K} &= k_1\mathbf\hat{x} + k_2\mathbf\hat{y} + k_3\mathbf\hat{z} ~.\\ \end{align}</math> The transformation from '''{{math|x̂}}''', '''{{math|ŷ}}''', '''{{math|ẑ}}''' to Euler angles {{math|Ω}}, ''{{mvar|i}}'', ''{{mvar|ω}}'' is: <math display="block">\begin{align} \Omega &= \operatorname{arg}\left( -z_2, z_1 \right)\\ i &= \operatorname{arg}\left( z_3, \sqrt{{z_1}^2 + {z_2}^2} \right)\\ \omega &= \operatorname{arg}\left( y_3, x_3 \right)\\ \end{align}</math> where {{math|arg(''x'',''y'')}} signifies the polar argument that can be computed with the standard function {{mono|[[atan2|atan2(y,x)]]}} available in many programming languages.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)