Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partial fraction decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example 3 === This example illustrates almost all the "tricks" we might need to use, short of consulting a [[computer algebra system]]. <math display="block">f(x)=\frac{x^9-2x^6+2x^5-7x^4+13x^3-11x^2+12x-4}{x^7-3x^6+5x^5-7x^4+7x^3-5x^2+3x-1}</math> After [[Polynomial long division|long division]] and [[polynomial factorization|factoring]] the denominator, we have <math display="block">f(x)=x^2+3x+4+\frac{2x^6-4x^5+5x^4-3x^3+x^2+3x}{(x-1)^3(x^2+1)^2}</math> The partial fraction decomposition takes the form <math display="block">\frac{2x^6-4x^5+5x^4-3x^3+x^2+3x}{(x-1)^3(x^2+1)^2} = \frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{C}{(x-1)^3}+\frac{Dx+E}{x^2+1}+\frac{Fx+G}{(x^2+1)^2}.</math> Multiplying through by the denominator on the left-hand side we have the polynomial identity <math display="block">\begin{align} &2x^6 - 4x^5 + 5x^4 - 3x^3 + x^2 + 3x \\[4pt] ={}&A\left(x-1\right)^2 \left(x^2+1\right)^2+B\left(x-1\right)\left(x^2+1\right)^2 +C\left(x^2+1\right)^2 + \left(Dx+E\right)\left(x-1\right)^3\left(x^2+1\right)+\left(Fx+G\right)\left(x-1\right)^3 \end{align}</math> Now we use different values of ''x'' to compute the coefficients: <math display="block">\begin{cases} 4 = 4C & x =1 \\ 2 + 2i = (Fi + G) (2+ 2i) & x = i \\ 0 = A- B +C - E - G & x = 0 \end{cases}</math> Solving this we have: <math display="block">\begin{cases} C = 1 \\ F =0, G =1 \\ E = A-B\end{cases}</math> Using these values we can write: <math display="block">\begin{align} &2x^6-4x^5+5x^4-3x^3+x^2+3x \\[4pt] ={}& A\left(x-1\right)^2 \left(x^2+1\right)^2 + B\left(x-1\right)\left(x^2+1\right)^2 + \left(x^2 + 1\right)^2 + \left(Dx + \left(A-B\right)\right)\left(x-1\right)^3 \left(x^2+1\right) + \left(x-1\right)^3 \\[4pt] ={}& \left(A + D\right) x^6 + \left(-A - 3D\right) x^5 + \left(2B + 4D + 1\right) x^4 + \left(-2B - 4D + 1\right) x^3 + \left(-A + 2B + 3D - 1\right) x^2 + \left(A - 2B - D + 3\right) x \end{align}</math> We compare the coefficients of ''x''<sup>6</sup> and ''x''<sup>5</sup> on both side and we have: <math display="block">\begin{cases} A+D=2 \\ -A-3D = -4 \end{cases} \quad \Rightarrow \quad A= D = 1.</math> Therefore: <math display="block">2x^6-4x^5+5x^4-3x^3+x^2+3x = 2x^6 -4x^5 + (2B + 5) x^4 + (-2B - 3) x^3 + (2B +1) x^2 + (- 2B + 3) x</math> which gives us ''B'' = 0. Thus the partial fraction decomposition is given by: <math display="block">f(x)=x^2+3x+4+\frac{1}{(x-1)} + \frac{1}{(x - 1)^3} + \frac{x + 1}{x^2+1}+\frac{1}{(x^2+1)^2}.</math> Alternatively, instead of expanding, one can obtain other linear dependences on the coefficients computing some derivatives at <math>x = 1, \imath</math> in the above polynomial identity. (To this end, recall that the derivative at ''x'' = ''a'' of (''x'' β ''a'')<sup>''m''</sup>''p''(''x'') vanishes if ''m'' > 1 and is just ''p''(''a'') for ''m'' = 1.) For instance the first derivative at ''x'' = 1 gives <math display="block"> 2\cdot6-4\cdot5+5\cdot4-3\cdot3+2+3 = A\cdot(0+0) + B\cdot( 4+ 0) + 8 + D\cdot0 </math> that is 8 = 4''B'' + 8 so ''B'' = 0.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)