Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pauli matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====The group composition law of {{math|SU(2)}}==== A straightforward application of formula {{EquationNote|(2)}} provides a parameterization of the composition law of the group {{math|SU(2)}}.{{efn|The relation among {{math|''a, b, c,'' ''' n, m, k '''}} derived here in the {{math|2 × 2}} representation holds for ''all representations'' of {{math|SU(2)}}, being a ''group identity''. Note that, by virtue of the standard normalization of that group's generators as ''half'' the Pauli matrices, the parameters ''a'',''b'',''c'' correspond to ''half'' the rotation angles of the rotation group. That is, the Gibbs formula linked amounts to <math>\hat k \tan c/2= (\hat n \tan a/2+ \hat m \tan b/2 -\hat m \times \hat n \tan a/2 ~ \tan b/2 )/(1-\hat m\cdot \hat n \tan a/2 ~\tan b/2 )</math>.}} One may directly solve for {{mvar|c}} in <math display=block>\begin{align} e^{ia\left(\hat{n} \cdot \vec{\sigma}\right)} e^{ib\left(\hat{m} \cdot \vec{\sigma}\right)} &= I\left(\cos a \cos b - \hat{n} \cdot \hat{m} \sin a \sin b\right) + i\left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n} \times \hat{m} ~ \sin a \sin b \right) \cdot \vec{\sigma} \\ &= I\cos{c} + i \left(\hat{k} \cdot \vec{\sigma}\right) \sin c \\ &= e^{ic \left(\hat{k} \cdot \vec{\sigma}\right)}, \end{align}</math> which specifies the generic group multiplication, where, manifestly, <math display=block>\cos c = \cos a \cos b - \hat{n} \cdot \hat{m} \sin a \sin b~,</math> the [[spherical law of cosines]]. Given {{mvar|c}}, then, <math display=block>\hat{k} = \frac{1}{\sin c}\left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} \sin a \sin b\right).</math> Consequently, the composite rotation parameters in this group element (a closed form of the respective [[Baker–Campbell–Hausdorff formula|BCH expansion]] in this case) simply amount to<ref>{{cite book |first=J.W. |last=Gibbs |year=1884 |title=Elements of Vector Analysis |place=New Haven, CT |page=67 |author-link=J. W. Gibbs |chapter=4. Concerning the differential and integral calculus of vectors |chapter-url={{GBurl|VurzAAAAMAAJ|p=67}} |publisher=Tuttle, Moorehouse & Taylor }} In fact, however, the formula goes back to [[Olinde Rodrigues]] (1840), replete with half-angle: {{cite journal |first=Olinde |last=Rodrigues |author-link=Olinde Rodrigues |year=1840 |title=Des lois géometriques qui regissent les déplacements d' un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire |journal=[[J. Math. Pures Appl.]] |volume=5 |pages=380–440 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1840_1_5_A39_0.pdf}}</ref> <math display=block> e^{ic \hat{k} \cdot \vec{\sigma}} = \exp \left( i\frac{c}{\sin c} \left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} ~ \sin a \sin b\right) \cdot \vec{\sigma}\right). </math> (Of course, when <math>\hat{n}</math> is parallel to <math>\hat{m}</math>, so is <math>\hat{k}</math>, and {{math|1=''c'' = ''a + b''}}.) {{see also|Rotation formalisms in three dimensions#Rodrigues vector|Spinor#Three dimensions}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)