Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polar coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Differential calculus=== Using {{math|1=''x'' = ''r'' cos ''Ο'' }} and {{math|1=''y'' = ''r'' sin ''Ο'' }}, one can derive a relationship between derivatives in Cartesian and polar coordinates. For a given function, ''u''(''x'',''y''), it follows that (by computing its [[total derivative]]s) or <math display="block">\begin{align} r \frac{du}{dr} &= r \frac{\partial u}{\partial x} \cos\varphi + r \frac{\partial u}{\partial y} \sin\varphi = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}, \\[2pt] \frac{du}{d\varphi} &= - \frac{\partial u}{\partial x} r \sin\varphi + \frac{\partial u}{\partial y} r \cos\varphi = -y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y}. \end{align}</math> Hence, we have the following formula: <math display="block">\begin{align} r \frac{d}{dr} &= x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \\[2pt] \frac{d}{d\varphi} &= -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}. \end{align}</math> Using the inverse coordinates transformation, an analogous reciprocal relationship can be derived between the derivatives. Given a function ''u''(''r'',''Ο''), it follows that <math display="block">\begin{align} \frac{du}{dx} &= \frac{\partial u}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial x}, \\[2pt] \frac{du}{dy} &= \frac{\partial u}{\partial r}\frac{\partial r}{\partial y} + \frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}, \end{align}</math> or <math display="block">\begin{align} \frac{du}{dx} &= \frac{\partial u}{\partial r}\frac{x}{\sqrt{x^2+y^2}} - \frac{\partial u}{\partial \varphi}\frac{y}{x^2+y^2} \\[2pt] &= \cos \varphi \frac{\partial u}{\partial r} - \frac{1}{r} \sin\varphi \frac{\partial u}{\partial \varphi}, \\[2pt] \frac{du}{dy} &= \frac{\partial u}{\partial r}\frac{y}{\sqrt{x^2+y^2}} + \frac{\partial u}{\partial \varphi}\frac{x}{x^2+y^2} \\[2pt] &= \sin\varphi \frac{\partial u}{\partial r} + \frac{1}{r} \cos\varphi \frac{\partial u}{\partial \varphi}. \end{align}</math> Hence, we have the following formulae: <math display="block">\begin{align} \frac{d}{dx} &= \cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin\varphi \frac{\partial}{\partial \varphi} \\[2pt] \frac{d}{dy} &= \sin \varphi \frac{\partial}{\partial r} + \frac{1}{r} \cos\varphi \frac{\partial}{\partial \varphi}. \end{align}</math> To find the Cartesian slope of the tangent line to a polar curve ''r''(''Ο'') at any given point, the curve is first expressed as a system of [[parametric equations]]. <math display="block">\begin{align} x &= r(\varphi)\cos\varphi \\ y &= r(\varphi)\sin\varphi \end{align}</math> [[Derivative|Differentiating]] both equations with respect to ''Ο'' yields <math display="block">\begin{align} \frac{dx}{d\varphi} &= r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi \\[2pt] \frac{dy}{d\varphi} &= r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi. \end{align}</math> Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve at the point {{nowrap|(''r''(''Ο''), ''Ο'')}}: <math display="block">\frac{dy}{dx} = \frac{r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi}{r'(\varphi)\cos\varphi-r(\varphi)\sin\varphi}.</math> For other useful formulas including divergence, gradient, and Laplacian in polar coordinates, see [[curvilinear coordinates]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)