Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Potts model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Signal and image processing === The Potts model has applications in signal reconstruction. Assume that we are given noisy observation of a piecewise constant signal ''g'' in '''R'''<sup>''n''</sup>. To recover ''g'' from the noisy observation vector ''f'' in '''R'''<sup>''n''</sup>, one seeks a minimizer of the corresponding inverse problem, the ''L<sup>p</sup>''-Potts functional ''P''<sub>γ</sub>(''u''), which is defined by : <math> P_\gamma(u) = \gamma \| \nabla u \|_0 + \| u-f\|_p^p = \gamma \# \{ i : u_i \neq u_{i+1} \} + \sum_{i=1}^n |u_i - f_i|^p</math> The jump penalty <math>\| \nabla u \|_0</math> forces piecewise constant solutions and the data term <math>\| u-f\|_p^p</math> couples the minimizing candidate ''u'' to the data ''f''. The parameter γ > 0 controls the tradeoff between regularity and [[data fidelity]]. There are fast algorithms for the exact minimization of the ''L''<sup>1</sup> and the ''L''<sup>2</sup>-Potts functional.<ref>{{Cite journal |last1=Friedrich |first1=F. |last2=Kempe |first2=A. |last3=Liebscher |first3=V. |last4=Winkler |first4=G. |date=2008 |title=Complexity Penalized M-Estimation: Fast Computation |jstor=27594299 |journal=Journal of Computational and Graphical Statistics |volume=17 |issue=1 |pages=201–224 |doi=10.1198/106186008X285591 |s2cid=117951377 |issn=1061-8600}}</ref> In image processing, the Potts functional is related to the segmentation problem.<ref>{{Cite journal |last1=Krähenbühl |first1=Philipp |last2=Koltun |first2=Vladlen |date=2011 |title=Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials |url=https://proceedings.neurips.cc/paper/2011/hash/beda24c1e1b46055dff2c39c98fd6fc1-Abstract.html |journal=Advances in Neural Information Processing Systems |publisher=Curran Associates, Inc. |volume=24|arxiv=1210.5644 }}</ref> However, in two dimensions the problem is NP-hard.<ref>{{Cite journal |last1=Boykov |first1=Y. |last2=Veksler |first2=O. |last3=Zabih |first3=R. |date=November 2001 |title=Fast approximate energy minimization via graph cuts |url=https://ieeexplore.ieee.org/document/969114 |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=23 |issue=11 |pages=1222–1239 |doi=10.1109/34.969114 |issn=1939-3539}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)