Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propagator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other theories=== ==== Spin {{frac|1|2}} ==== If the particle possesses [[Spin (physics)|spin]] then its propagator is in general somewhat more complicated, as it will involve the particle's spin or polarization indices. The differential equation satisfied by the propagator for a spin {{frac|1|2}} particle is given by<ref>{{harvnb|Greiner|Reinhardt|2008|loc=Ch.2}}</ref> :<math>(i\not\nabla' - m)S_F(x', x) = I_4\delta^4(x'-x),</math> where {{math|''I''<sub>4</sub>}} is the unit matrix in four dimensions, and employing the [[Feynman slash notation]]. This is the Dirac equation for a delta function source in spacetime. Using the momentum representation, <math display="block">S_F(x', x) = \int\frac{d^4p}{(2\pi)^4}\exp{\left[-ip \cdot(x'-x)\right]}\tilde S_F(p),</math> the equation becomes : <math> \begin{align} & (i \not \nabla' - m)\int\frac{d^4p}{(2\pi)^4}\tilde S_F(p)\exp{\left[-ip \cdot(x'-x)\right]} \\[6pt] = {} & \int\frac{d^4p}{(2\pi)^4}(\not p - m)\tilde S_F(p)\exp{\left[-ip \cdot(x'-x)\right]} \\[6pt] = {} & \int\frac{d^4p}{(2\pi)^4}I_4\exp{\left[-ip \cdot(x'-x)\right]} \\[6pt] = {} & I_4\delta^4(x'-x), \end{align} </math> where on the right-hand side an integral representation of the four-dimensional delta function is used. Thus :<math>(\not p - m I_4)\tilde S_F(p) = I_4.</math> By multiplying from the left with <math display="block">(\not p + m)</math> (dropping unit matrices from the notation) and using properties of the [[gamma matrices]], <math display="block">\begin{align} \not p \not p & = \tfrac{1}{2}(\not p \not p + \not p \not p) \\[6pt] & = \tfrac{1}{2}(\gamma_\mu p^\mu \gamma_\nu p^\nu + \gamma_\nu p^\nu \gamma_\mu p^\mu) \\[6pt] & = \tfrac{1}{2}(\gamma_\mu \gamma_\nu + \gamma_\nu\gamma_\mu)p^\mu p^\nu \\[6pt] & = g_{\mu\nu}p^\mu p^\nu = p_\nu p^\nu = p^2, \end{align}</math> the momentum-space propagator used in Feynman diagrams for a [[Dirac equation|Dirac]] field representing the [[electron]] in [[quantum electrodynamics]] is found to have form :<math> \tilde{S}_F(p) = \frac{(\not p + m)}{p^2 - m^2 + i \varepsilon} = \frac{(\gamma^\mu p_\mu + m)}{p^2 - m^2 + i \varepsilon}.</math> The {{math|''iε''}} downstairs is a prescription for how to handle the poles in the complex {{math|''p''<sub>0</sub>}}-plane. It automatically yields the [[Feynman propagator|Feynman contour of integration]] by shifting the poles appropriately. It is sometimes written :<math>\tilde{S}_F(p) = {1 \over \gamma^\mu p_\mu - m + i\varepsilon} = {1 \over \not p - m + i\varepsilon} </math> for short. It should be remembered that this expression is just shorthand notation for {{math|(''γ''<sub>''μ''</sub>''p''<sup>''μ''</sup> − ''m'')<sup>−1</sup>}}. "One over matrix" is otherwise nonsensical. In position space one has <math display="block">S_F(x-y) = \int \frac{d^4 p}{(2\pi)^4} \, e^{-i p \cdot (x-y)} \frac{\gamma^\mu p_\mu + m}{p^2 - m^2 + i \varepsilon} = \left( \frac{\gamma^\mu (x-y)_\mu}{|x-y|^5} + \frac{m}{|x-y|^3} \right) J_1(m |x-y|).</math> This is related to the Feynman propagator by :<math>S_F(x-y) = (i \not \partial + m) G_F(x-y)</math> where <math>\not \partial := \gamma^\mu \partial_\mu</math>. ==== Spin 1 ==== The propagator for a [[gauge boson]] in a [[gauge theory]] depends on the choice of convention to fix the gauge. For the gauge used by Feynman and [[Ernst Stueckelberg|Stueckelberg]], the propagator for a [[photon]] is :<math>{-i g^{\mu\nu} \over p^2 + i\varepsilon }.</math> The general form with gauge parameter {{math|''λ''}}, up to overall sign and the factor of <math>i</math>, reads :<math> -i\frac{g^{\mu\nu} + \left(1-\frac{1}{\lambda}\right)\frac{p^\mu p^\nu}{p^2}}{p^2+i\varepsilon}.</math> The propagator for a massive vector field can be derived from the Stueckelberg Lagrangian. The general form with gauge parameter {{math|''λ''}}, up to overall sign and the factor of <math>i</math>, reads :<math> \frac{g_{\mu\nu} - \frac{k_\mu k_\nu}{m^2}}{k^2-m^2+i\varepsilon}+\frac{\frac{k_\mu k_\nu}{m^2}}{k^2-\frac{m^2}{\lambda}+i\varepsilon}.</math> With these general forms one obtains the propagators in unitary gauge for {{math|''λ'' {{=}} 0}}, the propagator in Feynman or 't Hooft gauge for {{math|''λ'' {{=}} 1}} and in Landau or Lorenz gauge for {{math|''λ'' {{=}} ∞}}. There are also other notations where the gauge parameter is the inverse of {{mvar|λ}}, usually denoted {{mvar|ξ}} (see [[Gauge fixing#Rξ gauges|{{math|''R''<sub>ξ</sub>}} gauges]]). The name of the propagator, however, refers to its final form and not necessarily to the value of the gauge parameter. Unitary gauge: :<math>\frac{g_{\mu\nu} - \frac{k_\mu k_\nu}{m^2}}{k^2-m^2+i\varepsilon}.</math> Feynman ('t Hooft) gauge: :<math>\frac{g_{\mu\nu}}{k^2-m^2+i\varepsilon}.</math> Landau (Lorenz) gauge: :<math>\frac{g_{\mu\nu} - \frac{k_\mu k_\nu}{k^2}}{k^2-m^2+i\varepsilon}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)