Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ratio test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== 6. Kummer's test ==== This extension is due to [[Ernst Kummer]]. Let ζ<sub>''n''</sub> be an auxiliary sequence of positive constants. Define :<math>\rho_n \equiv \left(\zeta_n \frac{a_n}{a_{n+1}} - \zeta_{n+1}\right)</math> Kummer's test states that the series will:<ref name="Knopp"/><ref name="Tong1994"/><ref name="Duris2009"/><ref name="Duris2018"/> * Converge if there exists a <math>c>0</math> such that <math>\rho_n \ge c</math> for all n>N. (Note this is not the same as saying <math>\rho_n > 0</math>) * Diverge if <math>\rho_n \le 0</math> for all n>N and <math>\sum_{n=1}^\infty 1/\zeta_n</math> diverges. For the limit version, the series will:<ref>{{mathworld|title=Kummer's Test|urlname=KummersTest}}</ref><ref name="Ali2008"/><ref name="Blackburn2012"/> * Converge if <math>\lim_{n\to\infty}\rho_n>0</math> (this includes the case ''ρ'' = ∞) * Diverge if <math>\lim_{n\to\infty}\rho_n<0</math> and <math>\sum_{n=1}^\infty 1/\zeta_n</math> diverges. * Otherwise the test is inconclusive When the above limit does not exist, it may be possible to use limits superior and inferior.<ref name="Bromwich1908"/> The series will * Converge if <math>\liminf_{n \to \infty} \rho_n >0</math> * Diverge if <math>\limsup_{n \to \infty} \rho_n <0</math> and <math>\sum 1/\zeta_n</math> diverges. ===== Special cases ===== All of the tests in De Morgan's hierarchy except Gauss's test can easily be seen as special cases of Kummer's test:<ref name="Bromwich1908"/> * For the ratio test, let ζ<sub>n</sub>=1. Then: ::<math>\rho_\text{Kummer} = \left(\frac{a_n}{a_{n+1}}-1\right) = 1/\rho_\text{Ratio}-1</math> * For Raabe's test, let ζ<sub>n</sub>=n. Then: ::<math>\rho_\text{Kummer} = \left(n\frac{a_n}{a_{n+1}}-(n+1)\right) = \rho_\text{Raabe}-1</math> * For Bertrand's test, let ζ<sub>n</sub>=n ln(n). Then: ::<math>\rho_\text{Kummer} = n \ln(n)\left(\frac{a_n}{a_{n+1}}\right)-(n+1)\ln(n+1)</math> :Using <math>\ln(n+1)=\ln(n)+\ln(1+1/n)</math> and [[approximation|approximating]] <math>\ln(1+1/n)\rightarrow 1/n</math> for large ''n'', which is negligible compared to the other terms, <math>\rho_\text{Kummer}</math> may be written: ::<math>\rho_\text{Kummer} = n \ln(n)\left(\frac{a_n}{a_{n+1}}-1\right)-\ln(n)-1 = \rho_\text{Bertrand}-1</math> * For Extended Bertrand's test, let <math>\zeta_n=n\prod_{k=1}^K\ln_{(k)}(n).</math> From the [[Taylor series]] expansion for large <math>n</math> we arrive at the [[approximation]] ::<math>\ln_{(k)}(n+1)=\ln_{(k)}(n)+\frac{1}{n\prod_{j=1}^{k-1}\ln_{(j)}(n)}+O\left(\frac{1}{n^2}\right),</math> where the empty product is assumed to be 1. Then, ::<math>\rho_\text{Kummer} = n\prod_{k=1}^K\ln_{(k)}(n)\frac{a_n}{a_{n+1}}-(n+1)\left[\prod_{k=1}^K\left(\ln_{(k)}(n)+\frac{1}{n\prod_{j=1}^{k-1}\ln_{(j)}(n)}\right)\right]+o(1) =n\prod_{k=1}^K\ln_{(k)}(n)\left(\frac{a_n}{a_{n+1}}-1\right)-\sum_{j=1}^K\prod_{k=1}^j\ln_{(K-k+1)}(n)-1+o(1).</math> Hence, ::<math>\rho_\text{Kummer} = \rho_\text{Extended Bertrand}-1.</math> Note that for these four tests, the higher they are in the De Morgan hierarchy, the more slowly the <math>1/\zeta_n</math> series diverges. =====Proof of Kummer's test===== If <math>\rho_n>0</math> then fix a positive number <math>0<\delta<\rho_n</math>. There exists a natural number <math>N</math> such that for every <math>n>N,</math> :<math>\delta\leq\zeta_{n}\frac{a_{n}}{a_{n+1}}-\zeta_{n+1}.</math> Since <math>a_{n+1}>0</math>, for every <math>n> N,</math> :<math>0\leq \delta a_{n+1}\leq \zeta_{n}a_{n}-\zeta_{n+1}a_{n+1}.</math> In particular <math>\zeta_{n+1}a_{n+1}\leq \zeta_{n}a_{n}</math> for all <math>n\geq N</math> which means that starting from the index <math>N</math> the sequence <math>\zeta_{n}a_{n}>0</math> is monotonically decreasing and positive which in particular implies that it is bounded below by 0. Therefore, the limit :<math>\lim_{n\to\infty}\zeta_{n}a_{n}=L</math> exists. This implies that the positive [[telescoping series]] :<math>\sum_{n=1}^{\infty}\left(\zeta_{n}a_{n}-\zeta_{n+1}a_{n+1}\right)</math> is convergent, and since for all <math>n>N,</math> :<math>\delta a_{n+1}\leq \zeta_{n}a_{n}-\zeta_{n+1}a_{n+1}</math> by the [[direct comparison test]] for positive series, the series <math>\sum_{n=1}^{\infty}\delta a_{n+1}</math> is convergent. On the other hand, if <math>\rho<0</math>, then there is an ''N'' such that <math>\zeta_n a_n</math> is increasing for <math>n>N</math>. In particular, there exists an <math>\epsilon>0</math> for which <math>\zeta_n a_n>\epsilon</math> for all <math>n>N</math>, and so <math>\sum_n a_n=\sum_n \frac{a_n\zeta_n}{\zeta_n}</math> diverges by comparison with <math>\sum_n \frac \epsilon {\zeta_n}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)