Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reconfigurable computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Granularity=== The granularity of the reconfigurable logic is defined as the size of the smallest functional unit (configurable logic block, CLB) that is addressed by the mapping tools. High granularity, which can also be known as fine-grained, often implies a greater flexibility when implementing algorithms into the hardware. However, there is a penalty associated with this in terms of increased power, area and delay due to greater quantity of routing required per computation. Fine-grained architectures work at the bit-level manipulation level; whilst coarse grained processing elements (reconfigurable datapath unit, rDPU) are better optimised for standard data path applications. One of the drawbacks of coarse grained architectures are that they tend to lose some of their utilisation and performance if they need to perform smaller computations than their granularity provides, for example for a one bit add on a four bit wide functional unit would waste three bits. This problem can be solved by having a coarse grain array ([[reconfigurable datapath array]], rDPA) and a [[FPGA]] on the same chip. Coarse-grained architectures ([[rDPA]]) are intended for the implementation for algorithms needing word-width data paths (rDPU). As their functional blocks are optimized for large computations and typically comprise word wide [[arithmetic logic unit]]s (ALU), they will perform these computations more quickly and with more power efficiency than a set of interconnected smaller functional units; this is due to the connecting wires being shorter, resulting in less wire capacitance and hence faster and lower power designs. A potential undesirable consequence of having larger computational blocks is that when the size of operands may not match the algorithm an inefficient utilisation of resources can result. Often the type of applications to be run are known in advance allowing the logic, memory and routing resources to be tailored to enhance the performance of the device whilst still providing a certain level of flexibility for future adaptation. Examples of this are domain specific arrays aimed at gaining better performance in terms of power, area, throughput than their more generic finer grained [[FPGA]] cousins by reducing their flexibility.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)