Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riesz representation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Adjoints are transposes === {{Main|Transpose of a linear map}} {{See also|Transpose}} It is also possible to define the {{em|[[Transpose of a linear map|transpose]]}} or {{em|[[algebraic adjoint]]}} of <math>A : H \to Z,</math> which is the map <math>{}^{t}A : Z^* \to H^*</math> defined by sending a continuous linear functionals <math>\psi \in Z^*</math> to <math display=block>{}^{t}A(\psi) := \psi \circ A,</math> where the [[Function composition|composition]] <math>\psi \circ A</math> is always a continuous linear functional on <math>H</math> and it satisfies <math>\|A\| = \left\|{}^t A\right\|</math> (this is true more generally, when <math>H</math> and <math>Z</math> are merely [[normed space]]s).{{sfn|Rudin|1991|pp=92-115}} <!-------------- START: Removed info -------------- which is equivalent to: <math display=block>\psi(A h) = \left({}^t A(\psi)\right) h \quad \text{ for all } h \in H \text{ and all } \psi \in Z^*.</math> ---------------- END: Removed info --------------> So for example, if <math>z \in Z</math> then <math>{}^{t}A</math> sends the continuous linear functional <math>\langle z \mid \cdot \rangle_Z \in Z^*</math> (defined on <math>Z</math> by <math>g \mapsto \langle z \mid g \rangle_Z</math>) to the continuous linear functional <math>\langle z \mid A(\cdot) \rangle_Z \in H^*</math> (defined on <math>H</math> by <math>h \mapsto \langle z \mid A(h) \rangle_Z</math>);<ref group=note name="ExplicitDefOfInnerProductOfTranspose" /> using bra-ket notation, this can be written as <math>{}^{t}A \langle z \mid ~=~ \langle z \mid A</math> where the juxtaposition of <math>\langle z \mid</math> with <math>A</math> on the right hand side denotes function composition: <math>H \xrightarrow{A} Z \xrightarrow{\langle z \mid} \Complex.</math> The adjoint <math>A^* : Z \to H</math> is actually just to the transpose <math>{}^{t}A : Z^* \to H^*</math>{{sfn|Rudin|1991|pp=306-312}} when the Riesz representation theorem is used to identify <math>Z</math> with <math>Z^*</math> and <math>H</math> with <math>H^*.</math> Explicitly, the relationship between the adjoint and transpose is: {{NumBlk|:|<math>{}^{t}A ~\circ~ \Phi_Z ~=~ \Phi_H ~\circ~ A^*</math>|{{EquationRef|Adjoint-transpose}}|LnSty=1px dashed black}} which can be rewritten as: <math display=block>A^* ~=~ \Phi_H^{-1} ~\circ~ {}^{t}A ~\circ~ \Phi_Z \quad \text{ and } \quad {}^{t}A ~=~ \Phi_H ~\circ~ A^* ~\circ~ \Phi_Z^{-1}.</math> {{Math proof|title=Proof|drop=hidden|proof= To show that <math>{}^{t}A ~\circ~ \Phi_Z ~=~ \Phi_H ~\circ~ A^*,</math> fix <math>z \in Z.</math> The definition of <math>{}^{t}A</math> implies <math display=block>\left({}^{t}A \circ \Phi_Z\right) z = {}^{t}A \left(\Phi_Z z\right) = \left(\Phi_Z z\right) \circ A</math> so it remains to show that <math>\left(\Phi_Z z\right) \circ A = \Phi_H\left(A^* z\right).</math> If <math>h \in H</math> then <math display=block>\left(\left(\Phi_Z z\right) \circ A\right) h = \left(\Phi_Z z\right)(A h) = \langle z\mid A h \rangle_Z = \langle A^* z\mid h \rangle_H = \left(\Phi_H(A^* z)\right) h,</math> as desired. <math>\blacksquare</math> }} Alternatively, the value of the left and right hand sides of ({{EquationNote|Adjoint-transpose}}) at any given <math>z \in Z</math> can be rewritten in terms of the inner products as: <math display=block>\left({}^{t}A ~\circ~ \Phi_Z\right) z = \langle z \mid A (\cdot) \rangle_Z \quad \text{ and } \quad\left(\Phi_H ~\circ~ A^*\right) z = \langle A^* z\mid\cdot\, \rangle_H</math> so that <math>{}^{t}A ~\circ~ \Phi_Z ~=~ \Phi_H ~\circ~ A^*</math> holds if and only if <math>\langle z \mid A (\cdot) \rangle_Z = \langle A^* z\mid\cdot\, \rangle_H</math> holds; but the equality on the right holds by definition of <math>A^* z.</math> The defining condition of <math>A^* z</math> can also be written <math display=block>\langle z \mid A ~=~ \langle A^*z \mid</math> if bra-ket notation is used.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)