Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotation matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == {{col-begin}} {{col-1-of-2}} *The {{nowrap|2 Γ 2}} rotation matrix ::<math> Q = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} </math> :corresponds to a 90Β° planar rotation clockwise about the origin. *The [[transpose matrix|transpose]] of the {{nowrap|2 Γ 2}} matrix ::<math> M = \begin{bmatrix} 0.936 & 0.352 \\ 0.352 & -0.936 \end{bmatrix} </math> :is its inverse, but since its determinant is β1, this is not a proper rotation matrix; it is a reflection across the line {{math|11''y'' {{=}} 2''x''}}. *The {{nowrap|3 Γ 3}} rotation matrix ::<math> Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac12 \\ 0 & -\frac12 & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 30^\circ & \sin 30^\circ \\ 0 & -\sin 30^\circ & \cos 30^\circ \\ \end{bmatrix} </math> :corresponds to a β30Β° rotation around the {{mvar|x}}-axis in three-dimensional space. *The {{nowrap|3 Γ 3}} rotation matrix ::<math> Q = \begin{bmatrix} 0.36 & 0.48 & -0.80 \\ -0.80 & 0.60 & 0.00 \\ 0.48 & 0.64 & 0.60 \end{bmatrix} </math> :corresponds to a rotation of approximately β74Β° around the axis {{nowrap|(β{{sfrac|1|2}},1,1)}} in three-dimensional space. *The {{nowrap|3 Γ 3}} [[permutation matrix]] ::<math> P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} </math> :is a rotation matrix, as is the matrix of any [[even permutation]], and rotates through 120Β° about the axis {{math|''x'' {{=}} ''y'' {{=}} ''z''}}. {{col-2-of-2}} *The {{nowrap|3 Γ 3}} matrix ::<math> M = \begin{bmatrix} 3 & -4 & 1 \\ 5 & 3 & -7 \\ -9 & 2 & 6 \end{bmatrix} </math> :has determinant +1, but is not orthogonal (its transpose is not its inverse), so it is not a rotation matrix. *The {{nowrap|4 Γ 3}} matrix ::<math> M = \begin{bmatrix} 0.5 & -0.1 & 0.7 \\ 0.1 & 0.5 & -0.5 \\ -0.7 & 0.5 & 0.5 \\ -0.5 & -0.7 & -0.1 \end{bmatrix} </math> :is not square, and so cannot be a rotation matrix; yet {{math|''M''<sup>T</sup>''M''}} yields a {{nowrap|3 Γ 3}} identity matrix (the columns are orthonormal). *The {{nowrap|4 Γ 4}} matrix ::<math> Q = -I = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} </math> :describes an [[SO(4)#Isoclinic rotations|isoclinic rotation]] in four dimensions, a rotation through equal angles (180Β°) through two orthogonal planes. *The {{nowrap|5 Γ 5}} rotation matrix ::<math> Q = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} </math> :rotates vectors in the plane of the first two coordinate axes 90Β°, rotates vectors in the plane of the next two axes 180Β°, and leaves the last coordinate axis unmoved. {{col-end}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)