Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Semisimple Lie algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== The case of sl(n,C)== If <math>\mathfrak{g}=\mathrm{sl}(n,\mathbb{C})</math>, then <math>\mathfrak{h}</math> may be taken to be the diagonal subalgebra of <math>\mathfrak{g}</math>, consisting of diagonal matrices whose diagonal entries sum to zero. Since <math>\mathfrak{h}</math> has dimension <math>n-1</math>, we see that <math>\mathrm{sl}(n;\mathbb{C})</math> has rank <math>n-1</math>. The root vectors <math>X</math> in this case may be taken to be the matrices <math>E_{i,j}</math> with <math>i\neq j</math>, where <math>E_{i,j}</math> is the matrix with a 1 in the <math>(i,j)</math> spot and zeros elsewhere.<ref>{{harvnb|Hall|2015}} Section 7.7.1</ref> If <math>H</math> is a diagonal matrix with diagonal entries <math>\lambda_1,\ldots,\lambda_n</math>, then we have :<math>[H,E_{i,j}]=(\lambda_i-\lambda_j)E_{i,j}</math>. Thus, the roots for <math>\mathrm{sl}(n,\mathbb{C})</math> are the linear functionals <math>\alpha_{i,j}</math> given by :<math>\alpha_{i,j}(H)=\lambda_i-\lambda_j</math>. After identifying <math>\mathfrak{h}</math> with its dual, the roots become the vectors <math>\alpha_{i,j}:=e_i-e_j</math> in the space of <math>n</math>-tuples that sum to zero. This is the root system [[Root system#An|known as <math>A_{n-1}</math>]] in the conventional labeling. The reflection associated to the root <math>\alpha_{i,j}</math> acts on <math>\mathfrak{h}</math> by transposing the <math>i</math> and <math>j</math> diagonal entries. The Weyl group is then just the permutation group on <math>n</math> elements, acting by permuting the diagonal entries of matrices in <math>\mathfrak{h}</math>.<!-- This is the old version of the structure section; it may (or may not) be needed to incorporated into the article == Structure == Let <math>\mathfrak g</math> be a complex [[semisimple Lie algebra]]. Let further <math>\mathfrak h</math> be a [[Semisimple_Lie_algebra#Cartan_subalgebras_and_root_systems|Cartan subalgebra]] of <math>\mathfrak g</math>. Then <math>\mathfrak h</math> acts on <math>\mathfrak g</math> via simultaneously [[diagonalizable]] linear maps in the [[adjoint representation of a Lie algebra|adjoint representation]]. For {{math|''λ''}} in <math>\mathfrak h^*,</math> define the subspace <math>\mathfrak g_\lambda\subset\mathfrak g</math> by :<math>\mathfrak{g}_\lambda := \{X\in\mathfrak{g}: [H,X]=\lambda(H)X\text{ for all }H\in\mathfrak{h}\}. </math> We say that <math>\lambda\in\mathfrak h^*</math> is a '''root''' if <math>\lambda\neq 0</math> and the subspace <math>\mathfrak g_\lambda</math> is nonzero. In this case <math>\mathfrak g_\lambda</math> is called the '''root space''' of {{math|''λ''}}. For each root <math>\lambda</math>, the root space <math>\mathfrak g_\lambda</math> is one-dimensional.<ref>{{harvnb|Hall|2015}} Theorem 7.23</ref> Meanwhile, the definition of Cartan subalgebra guarantees that <math>\mathfrak g_0=\mathfrak h</math>. Let {{math|''R''}} be the set of all roots. Since the elements of <math>\mathfrak h</math> are simultaneously diagonalizable, we have :<math>\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{\lambda\in R}\mathfrak{g}_\lambda.</math> The [[Cartan subalgebra]] <math>\mathfrak h</math> inherits a nondegenerate bilinear form from the [[Killing form]] on <math>\mathfrak g</math>. This form induces a form on <math>\mathfrak h^*</math> and the restriction of that form to the real span of the roots is an inner product. One can show that with respect to this inner product {{math|''R''}} is a reduced crystallographic root system.<ref>{{harvnb|Hall|2015}} Theorem 7.30</ref> Let moreover {{math|Δ}} be a choice of [[root system#Positive roots and simple roots|simple roots]]. Now, it is not particularly difficult to find the following set of generators <math>H_\lambda,X_\lambda,Y_\lambda\text{ for }\lambda\in\Delta</math> satisfying the Chevalley–Serre relations<ref>{{harvnb|Humphreys|1973}} Section 18.1</ref> :<math>\begin{align}[][H_\lambda,H_\mu] &=0 \text{ for all }\lambda,\mu\in\Delta,\\ \left[H_\lambda,X_\mu\right] &= C_{\mu,\lambda}X_\mu,\\ \left[H_\lambda,Y_\mu\right] &= -C_{\mu,\lambda}Y_\mu,\\ \left[X_\mu,Y_\lambda\right] &= \delta_{\mu\lambda}H_\mu,\\ \mathrm{ad}_{X_\lambda}^{1-C_{\mu,\lambda}}(X_\mu) &= 0\text{ for }\lambda\ne\mu,\\ \mathrm{ad}_{Y_\lambda}^{1-C_{\mu,\lambda}}(Y_\mu) &= 0\text{ for }\lambda\ne\mu.\end{align}</math> Here <math>C_{\lambda,\mu}</math> is the coefficient of the [[Cartan matrix]], given by :<math>C_{\lambda,\mu}=2\frac{(\lambda,\mu)}{(\mu,\mu)}</math>. Note that if <math>\lambda</math> and <math>\mu</math> are in <math>\Delta</math> with <math>\lambda\neq\mu</math>, then <math>(\lambda,\mu)\leq 0</math>, so that <math>C_{\lambda,\mu}</math> is a non-positive integer and <math>1-C_{\lambda,\mu}</math> is a positive integer. .<ref>{{harvnb|Humphreys|1973}} Proposition 18.1</ref> For each simple root <math>\lambda\in\Delta</math>, we can find <math>X_\lambda</math> in the root space <math>\mathfrak g_\lambda</math>, <math>Y_\lambda</math> in the root space <math>\mathfrak g_{-\lambda}</math> and <math>H_\lambda</math> in the Cartan subalgebra satisfying the standard <math>\mathrm{sl}(2;\mathbb C)</math> relations: <math>[H_\lambda,X_\lambda]=2X_\lambda</math>, <math>[H_\lambda,Y_\lambda]=-2Y_\lambda</math>, and <math>[X_\lambda,Y_\lambda]=H_\lambda</math>. These will be our generators. Now, the element <math>H_\lambda</math> is the ''coroot'' associated to <math>\lambda</math>, which means that after we identify <math>\mathfrak h</math> with its dual, we have <math>H_\lambda=2\lambda/(\lambda,\lambda).</math><ref>{{harvnb|Hall|2015}} Equation (7.9)</ref> Then we have, for example, :<math>[H_\lambda,X_\mu]=(\mu,H_\lambda)X_\mu=2\frac{(\mu,\lambda)}{(\lambda,\lambda)}X_\mu=C_{\mu,\lambda}X_\mu.</math> This sort of reasoning verifies the first four relations above. The last two relations hold because <math>[X_\lambda,X_\mu]</math> belongs to the root space <math>\mathfrak g_{\lambda+\mu}</math>, and more generally, <math>\mathrm{ad}_{X_\lambda}^{k}(X_\mu)</math> belongs to <math>\mathfrak g_{k\lambda+\mu}</math>. But, as we shall see momentarily, if <math>\lambda</math> and <math> \mu</math> are simple roots, then <math>k\lambda+\mu</math> is not a root if <math>k=1-C_{\mu,\lambda}</math>, so that <math>\mathrm{ad}_{X_\lambda}^{k}(X_\mu)</math> must be zero. To see that <math>k\lambda+\mu</math> is not a root, note that if <math>\lambda</math> and <math>\mu</math> are distinct elements of <math>\Delta</math>, then <math>-\lambda+\mu</math> cannot be a root, for this would violate one of the defining properties of a base—that the expansion of a root in terms of the base cannot have both positive and negative coefficients. But then if <math>s_\lambda</math> is the reflection associated to <math>\lambda</math>, we can easily calculate that :<math>s_\lambda\cdot(-\lambda+\mu)=\lambda+\mu-C_{\mu,\lambda}\lambda=k\lambda+\mu</math>. Then since <math>-\lambda+\mu</math> is not a root, neither is <math>k\lambda+\mu</math>. Note that the elements <math>\{X_\lambda,Y_\lambda,H_\lambda\},\,\lambda\in\Delta,</math> ''do not'' span <math>\mathfrak g</math> as a vector space, because <math>\lambda</math> does not range over all the positive roots, but only over the base. Nevertheless, these elements generate <math>\mathfrak g</math> as a Lie algebra.<ref>{{harvnb|Humphreys|1973}} Section 18.3</ref> ===Serre's theorem=== {{main|Serre's theorem on a semisimple Lie algebra}} Serre's theorem asserts the above generators and relations completely determine <math>\mathfrak g</math>. In fact Serre's theorem asserts that starting from an arbitrary root system—not assumed to come from a semisimple Lie algebra—we can use the above relations to ''define'' a Lie algebra, the Lie algebra is finite-dimensional and semisimple, and the root system of that Lie algebra is the root system <math>R</math> we started from.<ref>{{harvnb|Humphreys|1973}} Section 18.3</ref> A consequence of Serre's theorem is this: *Every (reduced, crystallographic) root system comes from a semisimple Lie algebra.-->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)