Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simple Lie group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Compact === {{See also|Compact group}} {| class="wikitable sortable" |- ! width=100| ! Dimension ! Real rank ! Fundamental<br>group ! class="unsortable" | Outer automorphism<br>group ! class="unsortable" | Other names ! class="unsortable" | Remarks |- ! ''A''<sub>''n''</sub> ({{math|''n'' β₯ 1}}) compact | ''n''(''n'' + 2) | 0 | Cyclic,<br/>order {{math|''n'' + 1}} | 1 if {{math|1=''n'' = 1}},<br/>2 if {{math|''n'' > 1}}. | '''[[projective special unitary group]]'''<br>{{math|PSU(''n'' + 1)}} | ''A''<sub>1</sub> is the same as ''B''<sub>1</sub> and ''C''<sub>1</sub> |- ! ''B''<sub>''n''</sub> ({{math|''n'' β₯ 2}}) compact | ''n''(2''n'' + 1) | 0 | 2 | 1 | '''[[special orthogonal group]]'''<br>SO<sub>2''n''+1</sub>(''R'') | ''B''<sub>1</sub> is the same as ''A''<sub>1</sub> and ''C''<sub>1</sub>.<br>''B''<sub>2</sub> is the same as ''C''<sub>2</sub>. |- ! ''C''<sub>''n''</sub> ({{math|''n'' β₯ 3}}) compact | ''n''(2''n'' + 1) | 0 | 2 | 1 | '''projective [[compact symplectic group]]'''<br>PSp(''n''), PSp(2''n''), PUSp(''n''), PUSp(2''n'') | Hermitian. Complex structures of ''H''<sup>''n''</sup>. Copies of complex projective space in quaternionic projective space. |- ! ''D''<sub>''n''</sub> ({{math|''n'' β₯ 4}}) compact | ''n''(2''n'' − 1) | 0 | Order 4 (cyclic when ''n'' is odd). | 2 if {{math|''n'' > 4}},<br/>''S''<sub>3</sub> if {{math|1=''n'' = 4}} |style="white-space:math"| '''projective special [[orthogonal group]]'''<br>PSO<sub>2''n''</sub>(''R'') | ''D''<sub>3</sub> is the same as ''A''<sub>3</sub>, ''D''<sub>2</sub> is the same as ''A''<sub>1</sub><sup>2</sup>, and ''D''<sub>1</sub> is abelian. |- ! ''E''<sub>6</sub><sup>−78</sup> compact | 78 | 0 | 3 | 2 | | |- ! ''E''<sub>7</sub><sup>−133</sup> compact | 133 | 0 | 2 | 1 | | |- ! ''E''<sub>8</sub><sup>−248</sup> compact | 248 | 0 | 1 | 1 | | |- ! ''F''<sub>4</sub><sup>−52</sup> compact | 52 | 0 | 1 | 1 | | |- ! ''G''<sub>2</sub><sup>−14</sup> compact | 14 | 0 | 1 | 1 | | This is the automorphism group of the Cayley algebra. |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)