Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Solar System
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Outer Solar System == The outer region of the Solar System is home to the [[giant planet]]s and their large moons. The [[Centaur (minor planet)|centaurs]] and many [[short-period comet]]s orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System contain a higher proportion of volatiles such as water, ammonia, and methane, than planets of the inner Solar System because their lower temperatures allow these compounds to remain solid, without significant [[Sublimation (phase transition)|sublimation]].<ref name="bennett_8.2"/> === Outer planets === {{Main|Giant planet}} [[File:Planet collage to scale (captioned).jpg|right|thumb|alt=Jupiter and Saturn is about 2 times bigger than Uranus and Neptune, 10 times bigger than Venus and Earth, 20 times bigger than Mars and 25 times bigger than Mercury|The outer planets [[Jupiter]], [[Saturn]], [[Uranus]] and [[Neptune]], compared to the inner planets Earth, Venus, Mars, and Mercury at the bottom right]] The four outer planets, called giant planets or Jovian planets, collectively make up 99% of the mass orbiting the Sun.<ref group="lower-alpha" name="footnoteD" /> All four giant planets have multiple moons and a ring system, although only Saturn's rings are easily observed from Earth.<ref name="Ryden" /> Jupiter and Saturn are composed mainly of gases with extremely low melting points, such as hydrogen, helium, and [[neon]],<ref name="Podolak Podolak et al. 2000">{{Cite journal |last1=Podolak |first1=M. |last2=Podolak |first2=J. I. |last3=Marley |first3=M. S. |date=February 2000 |title=Further investigations of random models of Uranus and Neptune |url=https://zenodo.org/record/998024 |url-status=live |journal=Planetary and Space Science |volume=48 |issue=2–3 |pages=143–151 |bibcode=2000P&SS...48..143P |doi=10.1016/S0032-0633(99)00088-4 |archive-url=https://web.archive.org/web/20191221231229/https://zenodo.org/record/998024 |archive-date=21 December 2019 |access-date=25 August 2019 |ref={{SfnRef|Podolak Podolak et al.|2000}}}}</ref> hence their designation as [[gas giant]]s.<ref>{{Cite web |title=Gas Giant {{!}} Planet Types |url=https://exoplanets.nasa.gov/what-is-an-exoplanet/planet-types/gas-giant |url-status=live |archive-url=https://web.archive.org/web/20201128232046/https://exoplanets.nasa.gov/what-is-an-exoplanet/planet-types/gas-giant |archive-date=28 November 2020 |access-date=22 December 2020 |website=Exoplanet Exploration: Planets Beyond our Solar System|date=22 October 2020 }}</ref> Uranus and Neptune are [[ice giants]],<ref>{{Cite web |last1=Lissauer |first1=Jack J. |last2=Stevenson |first2=David J. |date=2006 |title=Formation of Giant Planets |url=http://www.gps.caltech.edu/uploads/File/People/djs/lissauer&stevenson(PPV).pdf |url-status=dead |archive-url=https://web.archive.org/web/20090326060004/http://www.gps.caltech.edu/uploads/File/People/djs/lissauer%26stevenson%28PPV%29.pdf |archive-date=26 March 2009 |access-date=16 January 2006 |website=NASA Ames Research Center; California Institute of Technology}}</ref> meaning they are largely composed of [[Volatile (astrogeology)|'ice' in the astronomical sense]] (chemical compounds with melting points of up to a few hundred [[kelvin]]s<ref name="Podolak Podolak et al. 2000" /> such as water, methane, ammonia, [[hydrogen sulfide]], and [[carbon dioxide]].<ref name="Podolak Weizman et al. 1995">{{Cite journal |last1=Podolak |first1=M. |last2=Weizman |first2=A. |last3=Marley |first3=M. |date=December 1995 |title=Comparative models of Uranus and Neptune |journal=Planetary and Space Science |volume=43 |issue=12 |pages=1517–1522 |bibcode=1995P&SS...43.1517P |doi=10.1016/0032-0633(95)00061-5 |ref={{SfnRef|Podolak Weizman et al.|1995}}}}</ref>) Icy substances comprise the majority of the satellites of the giant planets and small objects that lie beyond Neptune's orbit.<ref name="Podolak Weizman et al. 1995" /><ref name="zeilik">{{Cite book |last=Zellik |first=Michael |title=Astronomy: The Evolving Universe |date=2002 |publisher=[[Cambridge University Press]] |isbn=978-0-521-80090-7 |edition=9th |page=240 |oclc=223304585}}</ref> * {{Visible anchor|Jupiter|text=[[Jupiter]]}} (4.95–5.46 AU)<ref name="nasa-factsheet" group="D" /> is the biggest and most massive planet in the Solar System. On its surface, there are orange-brown and white cloud bands moving via the principles of [[atmospheric circulation]], with giant storms swirling on the surface such as the [[Great Red Spot]] and [[Oval BA|white 'ovals']]. [[Magnetosphere of Jupiter|Jupiter possesses a strong enough magnetosphere]] to redirect [[ionizing radiation]] and cause [[aurora]]s on its poles.<ref>{{Cite book |last=Rogers |first=John H. |url=https://books.google.com/books?id=SO48AAAAIAAJ&pg=PA293 |title=The giant planet Jupiter |date=1995 |publisher=Cambridge University Press |isbn=978-0521410083 |page=293 |access-date=13 April 2022 |archive-url=https://web.archive.org/web/20220420161219/https://www.google.com/books/edition/The_Giant_Planet_Jupiter/SO48AAAAIAAJ?gbpv=1&pg=PA293 |archive-date=20 April 2022 |url-status=live}}</ref> As of 2025, Jupiter has [[Moons of Jupiter|97 confirmed satellites]], which can roughly be sorted into three groups: ** The Amalthea group, consisting of [[Metis (moon)|Metis]], [[Adrastea (moon)|Adrastea]], [[Amalthea (moon)|Amalthea]], and [[Thebe (moon)|Thebe]]. They orbit substantially closer to Jupiter than other satellites.<ref>{{cite journal |last=Anderson |first=J.D. |author2=Johnson, T.V. |author3=Shubert, G. |display-authors=etal |date=2005 |title=Amalthea's Density Is Less Than That of Water |journal=Science |volume=308 |issue=5726 |pages=1291–1293 |bibcode=2005Sci...308.1291A |doi=10.1126/science.1110422 |pmid=15919987 |s2cid=924257}}</ref> Materials from these natural satellites are the source of Jupiter's faint ring.<ref>{{cite journal |author=Burns, J. A. |author2=Showalter, M. R. |author3=Hamilton, D. P. |display-authors=etal |date=1999 |title=The Formation of Jupiter's Faint Rings |journal=Science |volume=284 |issue=5417 |pages=1146–1150 |bibcode=1999Sci...284.1146B |doi=10.1126/science.284.5417.1146 |pmid=10325220 |s2cid=21272762}}</ref> ** The [[Galilean moons]], consisting of [[Ganymede (moon)|Ganymede]], [[Callisto (moon)|Callisto]], [[Io (moon)|Io]], and [[Europa (moon)|Europa]]. They are the largest moons of Jupiter and exhibit planetary properties.<ref>{{Cite web |last=Pappalardo |first=R. T. |date=1999 |title=Geology of the Icy Galilean Satellites: A Framework for Compositional Studies |url=http://www.agu.org/cgi-bin/SFgate/SFgate?&listenv=table&multiple=1&range=1&directget=1&application=fm99&database=%2Fdata%2Fepubs%2Fwais%2Findexes%2Ffm99%2Ffm99&maxhits=200&=%22P11C-10%22 |url-status=dead |archive-url=https://web.archive.org/web/20070930165551/http://www.agu.org/cgi-bin/SFgate/SFgate?&listenv=table&multiple=1&range=1&directget=1&application=fm99&database=%2Fdata%2Fepubs%2Fwais%2Findexes%2Ffm99%2Ffm99&maxhits=200&=%22P11C-10%22 |archive-date=30 September 2007 |access-date=16 January 2006 |website=Brown University}}</ref> ** Irregular satellites, consisting of substantially smaller natural satellites. They have more distant orbits than the other objects.<ref name="list">{{cite book |author=Sheppard, Scott S. |title=Jupiter. The planet, satellites and magnetosphere |author2=Jewitt, David C. |author3=Porco, Carolyn |date=2004 |publisher=Cambridge University Press |isbn=0-521-81808-7 |editor=Fran Bagenal |volume=1 |location=Cambridge, UK |pages=263–280 |chapter=Jupiter's outer satellites and Trojans |editor2=Timothy E. Dowling |editor3=William B. McKinnon |chapter-url=http://www.ifa.hawaii.edu/~jewitt/papers/JUPITER/JSP.2003.pdf |archive-url=https://web.archive.org/web/20090326065151/http://www.ifa.hawaii.edu/~jewitt/papers/JUPITER/JSP.2003.pdf |archive-date=26 March 2009 |url-status=dead}}</ref> * {{Visible anchor|Saturn|text=[[Saturn]]}} (9.08–10.12 AU)<ref name="nasa-factsheet" group="D" /> has a distinctive visible [[Rings of Saturn|ring system]] orbiting around its equator composed of small ice and rock particles. Like Jupiter, it is mostly made of hydrogen and helium.<ref>{{Cite web |date=18 August 2021 |title=In Depth: Saturn |url=https://solarsystem.nasa.gov/planets/saturn/in-depth |url-status=live |archive-url=https://web.archive.org/web/20180224210031/https://solarsystem.nasa.gov/planets/saturn/in-depth |archive-date=24 February 2018 |access-date=31 March 2022 |website=NASA Science: Solar System Exploration}}</ref> At its north and south poles, Saturn has peculiar [[Saturn's hexagon|hexagon-shaped storms]] larger than the diameter of Earth. [[Magnetosphere of Saturn|Saturn has a magnetosphere]] capable of producing weak auroras. As of 2025, Saturn has [[Moons of Saturn|274 confirmed satellites]], grouped into: ** Ring [[moonlet]]s and [[Shepherd moon|shepherds]], which orbit inside or close to Saturn's rings. A moonlet can only partially clear out dust in its orbit,<ref name="Sremcevic2007">{{cite journal |last1=Sremčević |first1=Miodrag |last2=Schmidt |first2=Jürgen |last3=Salo |first3=Heikki |last4=Seiß |first4=Martin |last5=Spahn |first5=Frank |last6=Albers |first6=Nicole |date=2007 |title=A belt of moonlets in Saturn's A ring |journal=[[Nature (journal)|Nature]] |volume=449 |issue=7165 |pages=1019–21 |bibcode=2007Natur.449.1019S |doi=10.1038/nature06224 |pmid=17960236 |s2cid=4330204}}</ref> while the ring shepherds are able to completely clear out dust, forming visible gaps in the rings.<ref name="Porco2005">{{cite journal |last1=Porco |first1=C. C. |last2=Baker |first2=E. |last3=Barbara |first3=J. |display-authors=etal |date=2005 |title=Cassini Imaging Science: Initial Results on Saturn's Rings and Small Satellites |url=http://ciclops.org/sci/docs/RingsSatsPaper.pdf |journal=Science |volume=307 |issue=5713 |pages=1234 |bibcode=2005Sci...307.1226P |doi=10.1126/science.1108056 |pmid=15731439 |s2cid=1058405 |access-date=21 April 2024 |archive-date=25 July 2011 |archive-url=https://web.archive.org/web/20110725171940/http://ciclops.org/sci/docs/RingsSatsPaper.pdf |url-status=live }}</ref> ** Inner large satellites [[Mimas]], [[Enceladus]], [[Tethys (moon)|Tethys]], and [[Dione (moon)|Dione]]. These satellites orbit within [[Rings of Saturn#E Ring|Saturn's E ring]]. They are composed mostly of water ice and are believed to have differentiated internal structures.<ref name=":2">{{Cite web |last=Williams |first=Matt |date=7 August 2015 |title=The moons of Saturn |url=https://phys.org/news/2015-08-moons-saturn.html |access-date=21 April 2024 |website=phys.org |language=en |archive-date=21 April 2024 |archive-url=https://web.archive.org/web/20240421075712/https://phys.org/news/2015-08-moons-saturn.html |url-status=live }}</ref> ** Trojan moons [[Calypso (moon)|Calypso]] and [[Telesto (moon)|Telesto]] (trojans of Tethys), and [[Helene (moon)|Helene]] and [[Polydeuces (moon)|Polydeuces]] (trojans of Dione). These small moons share their orbits with Tethys and Dione, leading or trailing either.<ref name="Calypso">{{cite web |publisher=NASA |url=https://science.nasa.gov/saturn/moons/calypso/ |title=Calypso |date=January 2024 |access-date=16 May 2024 |archive-date=17 May 2024 |archive-url=https://web.archive.org/web/20240517022857/https://science.nasa.gov/saturn/moons/calypso/ |url-status=live }}</ref><ref name="Polydeuces">{{cite web |publisher=NASA |url=https://science.nasa.gov/saturn/moons/polydeuces/ |title=Polydeuces |date=January 2024 |access-date=16 May 2024 }}</ref> ** Outer large satellites [[Rhea (moon)|Rhea]], [[Titan (moon)|Titan]], [[Hyperion (moon)|Hyperion]], and [[Iapetus (moon)|Iapetus]].<ref name=":2" /> Titan is the only satellite in the Solar System to have a substantial atmosphere.<ref name="Forget2017">{{cite journal |last1=Forget |first1=F. |last2=Bertrand |first2=T. |last3=Vangvichith |first3=M. |last4=Leconte |first4=J. |last5=Millour |first5=E. |last6=Lellouch |first6=E. |title=A post-New Horizons Global climate model of Pluto including the N 2, CH 4 and CO cycles |date=May 2017 |journal=Icarus |volume=287 |pages=54–71 |doi=10.1016/j.icarus.2016.11.038 |bibcode=2017Icar..287...54F|url=https://hal.sorbonne-universite.fr/hal-01427123/file/Forget_A_post-New_Horizons.pdf }}</ref> ** Irregular satellites, consisting of substantially smaller natural satellites. They have more distant orbits than the other objects. [[Phoebe (moon)|Phoebe]] is the largest irregular satellite of Saturn.<ref name="Jewitt2007"/> * {{Visible anchor|Uranus|text=[[Uranus]]}} (18.3–20.1 AU),<ref name="nasa-factsheet" group="D" /> uniquely among the planets, orbits the Sun on its side with an [[axial tilt]] >90°. This gives the planet extreme seasonal variation as each pole points alternately toward and then away from the Sun.<ref>{{Cite web |last=Devitt |first=Terry |date=14 October 2008 |title=New images yield clues to seasons of Uranus |publisher=University of Wisconsin–Madison |url=https://news.wisc.edu/new-images-yield-clues-to-seasons-of-uranus/ |access-date=6 April 2024 |archive-date=6 April 2024 |archive-url=https://web.archive.org/web/20240406210615/https://news.wisc.edu/new-images-yield-clues-to-seasons-of-uranus/ |url-status=live }}</ref> Uranus's outer layer has a muted [[cyan]] color, but underneath these clouds are [[Climate of Uranus|many mysteries about its climate]], such as unusually low [[internal heat]] and erratic cloud formation. As of 2025, Uranus has [[Moons of Uranus|28 confirmed satellites]], divided into three groups: ** Inner satellites, which orbit inside Uranus's ring system.<ref name="Esposito2002">{{cite journal |last=Esposito |first=L. W. |author-link=Larry W. Esposito |year=2002 |title=Planetary rings |journal=Reports on Progress in Physics |volume=65 |issue=12 |pages=1741–1783 |bibcode=2002RPPh...65.1741E |doi=10.1088/0034-4885/65/12/201 |s2cid=250909885}}</ref> They are very close to each other, which suggests that their orbits are [[Chaotic system|chaotic]].<ref name="Duncan Lissauer 1997">{{cite journal |last1=Duncan |first1=Martin J. |last2=Lissauer |first2=Jack J. |year=1997 |title=Orbital Stability of the Uranian Satellite System |journal=Icarus |volume=125 |issue=1 |pages=1–12 |bibcode=1997Icar..125....1D |doi=10.1006/icar.1996.5568}}</ref> ** Large satellites, consisting of [[Titania (moon)|Titania]], [[Oberon (moon)|Oberon]], [[Umbriel]], [[Ariel (moon)|Ariel]], and [[Miranda (moon)|Miranda]].<ref>{{Cite journal |last1=Sheppard |first1=S. S. |last2=Jewitt |first2=D. |last3=Kleyna |first3=J. |year=2005 |title=An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness |journal=The Astronomical Journal |volume=129 |issue=1 |page=518 |arxiv=astro-ph/0410059 |bibcode=2005AJ....129..518S |doi=10.1086/426329 |s2cid=18688556}}</ref> Most of them have roughly equal amounts of rock and ice, except Miranda, which is made primarily of ice.<ref name="Hussmann Sohl et al. 2006">{{cite journal |last1=Hussmann |first1=Hauke |last2=Sohl |first2=Frank |last3=Spohn |first3=Tilman |date=November 2006 |title=Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects |journal=[[Icarus (journal)|Icarus]] |volume=185 |issue=1 |pages=258–273 |bibcode=2006Icar..185..258H |doi=10.1016/j.icarus.2006.06.005 |ref={{sfnRef|Hussmann Sohl et al.|2006}}}}</ref> ** Irregular satellites, having more distant and eccentric orbits than the other objects.<ref name="Sheppardmoons2024">{{cite web |date=23 February 2024 |title=New Uranus and Neptune Moons |url=https://sites.google.com/carnegiescience.edu/sheppard/home/newuranusneptunemoons |accessdate=23 February 2024 |work=Earth & Planetary Laboratory |publisher=Carnegie Institution for Science |archive-date=23 February 2024 |archive-url=https://web.archive.org/web/20240223160326/https://sites.google.com/carnegiescience.edu/sheppard/home/newuranusneptunemoons |url-status=live }}</ref> * {{Visible anchor|Neptune|text=[[Neptune]]}} (29.9–30.5 AU)<ref name="nasa-factsheet" group="D" /> is the furthest planet known in the Solar System. Its outer atmosphere has a slightly muted cyan color, with occasional storms on the surface that look like dark spots. Like Uranus, many atmospheric phenomena of Neptune are unexplained, such as the [[thermosphere]]'s abnormally high temperature or the strong tilt (47°) of its magnetosphere. As of 2025, Neptune has [[Moons of Neptune|16 confirmed satellites]], divided into two groups: ** Regular satellites, which have circular orbits that lie near Neptune's equator.<ref name="Jewitt2007">{{cite journal |last=Jewitt |first=David |author2=Haghighipour, Nader |date=2007 |title=Irregular Satellites of the Planets: Products of Capture in the Early Solar System |url=http://www2.ess.ucla.edu/~jewitt/papers/2007/JH07.pdf |journal=Annual Review of Astronomy and Astrophysics |volume=45 |issue=1 |pages=261–95 |arxiv=astro-ph/0703059 |bibcode=2007ARA&A..45..261J |doi=10.1146/annurev.astro.44.051905.092459 |s2cid=13282788 |access-date=21 April 2024 |archive-date=25 February 2014 |archive-url=https://web.archive.org/web/20140225204338/http://www2.ess.ucla.edu/~jewitt/papers/2007/JH07.pdf |url-status=live }}</ref> ** Irregular satellites, which as the name implies, have less regular orbits. One of them, [[Triton (moon)|Triton]], is Neptune's largest moon. It is geologically active, with erupting [[geyser]]s of nitrogen gas, and possesses a thin, cloudy nitrogen atmosphere.<ref name="Soderblom2">{{Cite journal |last1=Soderblom |first1=L. A. |last2=Kieffer |first2=S. W. |last3=Becker |first3=T. L. |last4=Brown |first4=R. H. |last5=Cook |first5=A. F. II |last6=Hansen |first6=C. J. |last7=Johnson |first7=T. V. |last8=Kirk |first8=R. L. |last9=Shoemaker |first9=E. M. |author-link9=Eugene Merle Shoemaker |date=19 October 1990 |title=Triton's Geyser-Like Plumes: Discovery and Basic Characterization |url=https://www.geology.illinois.edu/~skieffer/papers/Truiton_Science_1990.pdf |url-status=live |journal=[[Science (journal)|Science]] |volume=250 |issue=4979 |pages=410–415 |bibcode=1990Sci...250..410S |doi=10.1126/science.250.4979.410 |pmid=17793016 |s2cid=1948948 |archive-url=https://web.archive.org/web/20210831121844/https://geology.illinois.edu/~skieffer/papers/Truiton_Science_1990.pdf |archive-date=31 August 2021 |access-date=31 March 2022}}</ref><ref name="Forget2017"/> === {{Anchor|Centaurs}}Centaurs === {{Main|Centaur (small Solar System body)|l1 = Centaur}} The centaurs are icy, comet-like bodies whose [[Semi-major and semi-minor axes|semi-major axes]] are longer than Jupiter's and shorter than Neptune's (between 5.5 and 30 AU). These are former Kuiper belt and [[Scattered disc|scattered disc objects]] (SDOs) that were gravitationally [[perturbation (astronomy)|perturbed]] closer to the Sun by the outer planets, and are expected to become comets or be ejected out of the Solar System.<ref name="Delsanti-Beyond_The_Planets" /> While most centaurs are inactive and asteroid-like, some exhibit cometary activity, such as the first centaur discovered, [[2060 Chiron]], which has been classified as a comet (95P) because it develops a coma just as comets do when they approach the Sun.<ref>{{Cite web |last=Vanouplines |first=Patrick |date=1995 |title=Chiron biography |url=http://www.vub.ac.be/STER/www.astro/chibio.htm |url-status=dead |archive-url=https://web.archive.org/web/20090502122306/http://www.vub.ac.be/STER/www.astro/chibio.htm |archive-date=2 May 2009 |access-date=23 June 2006 |website=Vrije Universitiet Brussel}}</ref> The largest known centaur, [[10199 Chariklo]], has a diameter of about {{Convert|250|km|abbr=on}} and is one of the few minor planets possessing a ring system.<ref name="spitzer">{{Cite conference |last1=Stansberry |first1=John |last2=Grundy |first2=Will |last3=Brown |first3=Mike |last4=Cruikshank |first4=Dale |last5=Spencer |first5=John |last6=Trilling |first6=David |last7=Margot |first7=Jean-Luc |date=2007 |title=Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope |page=161 |arxiv=astro-ph/0702538 |bibcode=2008ssbn.book..161S |book-title=The Solar System Beyond Neptune}}</ref><ref name="Braga-Ribas-2014">{{Cite journal |last=Braga-Ribas |first=F. |display-authors=etal |date=April 2014 |title=A ring system detected around the Centaur (10199) Chariklo |journal=[[Nature (journal)|Nature]] |volume=508 |issue=7494 |pages=72–75 |arxiv=1409.7259 |bibcode=2014Natur.508...72B |doi=10.1038/nature13155 |issn=0028-0836 |pmid=24670644 |s2cid=4467484}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)