Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Kinematics == In spherical coordinates, the position of a point or particle (although better written as a [[tuple|triple]]<math>(r,\theta, \varphi)</math>) can be written as<ref name="Cameron2019">{{Cite book |last=Reed |first=Bruce Cameron |url=https://www.worldcat.org/oclc/1104053368 |title=Keplerian ellipses : the physics of the gravitational two-body problem |date=2019 |others=Morgan & Claypool Publishers, Institute of Physics |isbn=978-1-64327-470-6 |location=San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, US) |oclc=1104053368}}</ref> <math display="block">\mathbf{r} = r \mathbf{\hat r} .</math> Its velocity is then<ref name="Cameron2019" /> <math display="block">\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \dot{r} \mathbf{\hat r} + r\,\dot\theta\,\hat{\boldsymbol\theta } + r\,\dot\varphi \sin\theta\,\mathbf{\hat{\boldsymbol\varphi}}</math> and its acceleration is<ref name="Cameron2019" /> <math display="block"> \begin{align} \mathbf{a} = {} & \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \\[1ex] = {} & \hphantom{+}\; \left( \ddot{r} - r\,\dot\theta^2 - r\,\dot\varphi^2\sin^2\theta \right)\mathbf{\hat r} \\ & {} + \left( r\,\ddot\theta + 2\dot{r}\,\dot\theta - r\,\dot\varphi^2\sin\theta\cos\theta \right) \hat{\boldsymbol\theta } \\ & {} + \left( r\ddot\varphi\,\sin\theta + 2\dot{r}\,\dot\varphi\,\sin\theta + 2 r\,\dot\theta\,\dot\varphi\,\cos\theta \right) \hat{\boldsymbol\varphi} \end{align} </math> The [[Angular_momentum#Orbital_angular_momentum_in_three_dimensions| angular momentum]] is <math display="block"> \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{r} \times m\mathbf{v} = m r^2 \left(- \dot\varphi \sin\theta\,\mathbf{\hat{\boldsymbol\theta}} + \dot\theta\,\hat{\boldsymbol\varphi }\right) </math> Where <math>m</math> is mass. In the case of a constant {{mvar|Ο}} or else {{math|''ΞΈ'' {{=}} {{sfrac|{{pi}}|2}}}}, this reduces to [[Polar coordinate system#Vector calculus|vector calculus in polar coordinates]]. The corresponding [[Angular_momentum_operator#Orbital_angular_momentum_in_spherical_coordinates| angular momentum operator]] then follows from the phase-space reformulation of the above, <math display="block"> \mathbf{L}= -i\hbar ~\mathbf{r} \times \nabla =i \hbar \left(\frac{\hat{\boldsymbol{\theta}}}{\sin(\theta)} \frac{\partial}{\partial\phi} - \hat{\boldsymbol{\phi}} \frac{\partial}{\partial\theta}\right). </math> The torque is given as<ref name="Cameron2019" /> <math display="block"> \mathbf{\tau} = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{r} \times \mathbf{F} = -m \left(2r\dot{r}\dot{\varphi}\sin\theta + r^2\ddot{\varphi}\sin{\theta} + 2r^2\dot{\theta}\dot{\varphi}\cos{\theta} \right)\hat{\boldsymbol\theta} + m \left(r^2\ddot{\theta} + 2r\dot{r}\dot{\theta} - r^2\dot{\varphi}^2\sin\theta\cos\theta \right) \hat{\boldsymbol\varphi} </math> The kinetic energy is given as<ref name="Cameron2019" /> <math display="block"> E_k = \frac{1}{2}m \left[ \left(\dot{r}\right)^2 + \left(r\dot{\theta}\right)^2 + \left(r\dot{\varphi}\sin\theta\right)^2 \right] </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)