Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Transformation at the fifth root of the nome === The [[Rogers-Ramanujan continued fraction]] can be defined in terms of the '''Jacobi theta function''' in the following way: : <math>R(q) = \tan\biggl\{\frac{1}{2}\arctan\biggl[\frac{1}{2} - \frac{\theta _{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{1/5} \tan\biggl\{\frac{1}{2}\arccot\biggl[\frac{1}{2} - \frac{\theta_{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{2/5} </math> : <math>R(q^2) = \tan\biggl\{\frac{1}{2}\arctan\biggl[\frac{1}{2} - \frac{\theta_{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{2/5} \cot\biggl\{\frac{1}{2}\arccot\biggl[\frac{1}{2} - \frac{\theta_{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{1/5} </math> : <math>R(q^2) = \tan\biggl\{\frac{1}{2}\arctan\biggl[\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{2/5} \tan\biggl\{\frac{1}{2}\arccot\biggl[\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{1/5} </math> The alternating Rogers-Ramanujan continued fraction function S(q) has the following two identities: : <math>S(q) = \frac{R(q^4)}{R(q^2)R(q)} = \tan\biggl\{\frac{1}{2}\arctan\biggl [\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{1/5} \cot\biggl\{\frac{1}{2}\arccot\biggl[\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{2/5}</math> The theta function values from the fifth root of the nome can be represented as a rational combination of the continued fractions R and S and the theta function values from the fifth power of the nome and the nome itself. The following four equations are valid for all values q between 0 and 1: : <math>\frac{\theta_{3}(q^{1/5})}{\theta_{3}(q^5)} - 1 = \frac{1}{S(q)}\bigl[S(q)^2 + R(q^2)\bigr]\bigl[1 + R(q^2)S(q)\bigr] </math> : <math>1 - \frac{\theta_{4}(q^{1/5})}{\theta_{4}(q^5)} = \frac{1}{R(q)}\bigl[R(q^2) + R(q)^2\bigr]\bigl[1 - R(q^2)R(q)\bigr] </math> : <math>\theta_{3}(q^{1/5})^2 - \theta_{3}(q)^2 = \bigl[\theta_{3}(q)^2 - \theta_{3}(q^5)^2\bigr]\biggl[1+\frac{1}{R(q^2)S(q)}+R(q^2)S(q)+\frac{1}{R(q^2)^2}+R(q^2)^2+\frac{1}{S(q)}-S(q)\biggr] </math> : <math>\theta_{4}(q)^2 - \theta_{4}(q^{1/5})^2 = \bigl[\theta_{4}(q^5)^2 - \theta_{4}(q)^2\bigr]\biggl[1-\frac{1}{R(q^2)R(q)}-R(q^2)R(q)+\frac{1}{R(q^2)^2}+R(q^2)^2-\frac{1}{R(q)}+R(q)\biggr] </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)