Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Travelling salesman problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== ''k''-opt heuristic, or Lin–Kernighan heuristics ==== The [[Lin–Kernighan heuristic]] is a special case of the ''V''-opt or variable-opt technique. It involves the following steps: # Given a tour, delete ''k'' mutually disjoint edges. # Reassemble the remaining fragments into a tour, leaving no disjoint subtours (that is, do not connect a fragment's endpoints together). This in effect simplifies the TSP under consideration into a much simpler problem. # Each fragment endpoint can be connected to {{math|2''k'' − 2}} other possibilities: of 2''k'' total fragment endpoints available, the two endpoints of the fragment under consideration are disallowed. Such a constrained 2''k''-city TSP can then be solved with brute-force methods to find the least-cost recombination of the original fragments. The most popular of the ''k''-opt methods are 3-opt, as introduced by Shen Lin of [[Bell Labs]] in 1965. A special case of 3-opt is where the edges are not disjoint (two of the edges are adjacent to one another). In practice, it is often possible to achieve substantial improvement over 2-opt without the combinatorial cost of the general 3-opt by restricting the 3-changes to this special subset where two of the removed edges are adjacent. This so-called two-and-a-half-opt typically falls roughly midway between 2-opt and 3-opt, both in terms of the quality of tours achieved and the time required to achieve those tours.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)