Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Z-transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== {| class="wikitable" |+ '''Properties of the z-transform''' ! Property ! Time domain ! Z-domain ! Proof ! ROC |- !Definition of Z-transform |<math>x[n]</math> |<math>X(z)</math> |<math>X(z)=\mathcal{Z}\{x[n]\}</math> (definition of the z-transform) <math>x[n]=\mathcal{Z}^{-1}\{X(z)\}</math> (definition of the inverse z-transform) |<math>r_2<|z|<r_1</math> |- ! [[Linearity]] | <math>a_1 x_1[n] + a_2 x_2[n]</math> | <math>a_1 X_1(z) + a_2 X_2(z)</math> | <math>\begin{align}X(z) &= \sum_{n=-\infty}^{\infty} (a_1x_1[n]+a_2x_2[n])z^{-n} \\ &= a_1\sum_{n=-\infty}^{\infty} x_1[n] \, z^{-n} + a_2\sum_{n=-\infty}^{\infty}x_2[n] \, z^{-n} \\ &= a_1X_1(z) + a_2X_2(z) \end{align} </math> | Contains ROC<sub>1</sub> β© ROC<sub>2</sub> |- ! [[Upsampling|Time expansion]] | <math>x_K[n] = \begin{cases} x[r], & n = Kr \\ 0, & n \notin K\mathbb{Z} \end{cases}</math> with <math>K\mathbb{Z} := \{Kr: r \in \mathbb{Z}\}</math> | <math>X(z^K)</math> | <math>\begin{align} X_K(z) &=\sum_{n=-\infty}^{\infty} x_K[n]z^{-n} \\ &= \sum_{r=-\infty}^{\infty}x[r]z^{-rK}\\ &= \sum_{r=-\infty}^{\infty}x[r](z^{K})^{-r}\\ &= X(z^{K}) \end{align}</math> | <math>R^{\frac{1}{K}}</math> |- ! [[Downsampling|Decimation]] | <math>x[Kn]</math> | <math>\frac{1}{K} \sum_{p=0}^{K-1} X\left(z^{\tfrac{1}{K}} \cdot e^{-i \tfrac{2\pi}{K} p}\right)</math> | [http://www2.ece.ohio-state.edu/~schniter/ee700/handouts/multirate.pdf ohio-state.edu] or [http://www.ee.ic.ac.uk/hp/staff/dmb/courses/DSPDF/01100_Multirate.pdf ee.ic.ac.uk] | |- ! Time delay | <math>x[n-k]</math> with <math>k>0</math> and <math>x : x[n]=0\ \forall \, n<0</math> | <math>z^{-k}X(z)</math> | <math>\begin{align} \mathcal{Z}\{x[n-k]\} &= \sum_{n=0}^{\infty} x[n-k]z^{-n}\\ &= \sum_{j=-k}^{\infty} x[j]z^{-(j+k)}&& j = n-k \\ &= \sum_{j=-k}^{\infty} x[j]z^{-j}z^{-k} \\ &= z^{-k}\sum_{j=-k}^{\infty}x[j]z^{-j}\\ &= z^{-k}\sum_{j=0}^{\infty}x[j]z^{-j} && x[\beta] = 0, \beta < 0\\ &= z^{-k}X(z)\end{align} </math> | ROC, except <math>z{=}0</math> if <math>k > 0</math> and <math>z {=} \infty</math> if <math>k < 0</math> |- ! Time advance | <math>x[n+k]</math> with <math>k>0</math> | Bilateral Z-transform: <math display="block">z^kX(z)</math> Unilateral Z-transform:<ref>{{cite book |last1=Bolzern |first1=Paolo |last2=Scattolini |first2=Riccardo |last3=Schiavoni |first3=Nicola |title=Fondamenti di Controlli Automatici |language=it |publisher=MC Graw Hill Education |isbn=978-88-386-6882-1|year=2015 }}</ref> <math display="block">z^k \, X(z)-z^k\sum^{k-1}_{n=0}x[n] \, z^{-n}</math> | | |- ! First difference backward | <math>x[n] - x[n-1]</math> with <math>x[n]{=}0 </math> for <math>n < 0 </math> | <math> (1-z^{-1}) \, X(z)</math> | | Contains the intersection of ROC of <math>X_1(z)</math> and <math>z \neq 0</math> |- ! First difference forward | <math>x[n+1] - x[n]</math> | <math> (z-1) \, X(z)-z \, x[0]</math> | | |- ! Time reversal | <math>x[-n]</math> | <math>X(z^{-1})</math> | <math>\begin{align} \mathcal{Z}\{x(-n)\} &= \sum_{n=-\infty}^{\infty} x[-n]z^{-n} \\ &= \sum_{m=-\infty}^{\infty} x[m]z^{m}\\ &= \sum_{m=-\infty}^{\infty} x[m]{(z^{-1})}^{-m}\\ &= X(z^{-1}) \\ \end{align} </math> | <math>\tfrac{1}{r_1}<|z|<\tfrac{1}{r_2}</math> |- ! Scaling in the z-domain | <math>a^n x[n]</math> | <math>X(a^{-1}z)</math> | <math>\begin{align}\mathcal{Z} \left \{a^n x[n] \right \} &= \sum_{n=-\infty}^{\infty} a^{n}x[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} x[n](a^{-1}z)^{-n} \\ &= X(a^{-1}z) \end{align} </math> | <math>|a|r_2 < |z|< |a|r_1</math> |- ! [[Complex conjugation]] | <math>x^*[n]</math> | <math>X^*(z^*)</math> | <math>\begin{align} \mathcal{Z} \{x^*(n)\} &= \sum_{n=-\infty}^{\infty} x^*[n]z^{-n}\\ &= \sum_{n=-\infty}^{\infty} \left [x[n](z^*)^{-n} \right ]^*\\ &= \left [ \sum_{n=-\infty}^{\infty} x[n](z^*)^{-n}\right ]^*\\ &= X^*(z^*) \end{align} </math> | |- ! [[Real part]] | <math>\operatorname{Re}\{x[n]\}</math> | <math>\tfrac{1}{2}\left[X(z)+X^*(z^*) \right]</math> | | |- ! [[Imaginary part]] | <math>\operatorname{Im}\{x[n]\}</math> | <math>\tfrac{1}{2j}\left[X(z)-X^*(z^*) \right]</math> | | |- ! [[Differentiation (calculus)|Differentiation]] in the z-domain | <math>n \, x[n]</math> | <math> -z \frac{dX(z)}{dz}</math> | <math>\begin{align} \mathcal{Z}\{n \, x(n)\} &= \sum_{n=-\infty}^{\infty} n \, x[n]z^{-n}\\ &= z \sum_{n=-\infty}^{\infty} n \, x[n]z^{-n-1}\\ &= -z \sum_{n=-\infty}^{\infty} x[n](-n \, z^{-n-1})\\ &= -z \sum_{n=-\infty}^{\infty} x[n]\frac{d}{dz}(z^{-n}) \\ &= -z \frac{dX(z)}{dz} \end{align} </math> | ROC, if <math>X(z)</math> is rational; ROC possibly excluding the boundary, if <math>X(z)</math> is irrational<ref name = forouzan>{{cite journal | journal = Electronics Letters| title = Region of convergence of derivative of Z transform | author = A. R. Forouzan | volume = 52 | issue = 8 | pages = 617β619 | year = 2016| doi = 10.1049/el.2016.0189| bibcode = 2016ElL....52..617F | s2cid = 124802942 }}</ref> |- ! [[Convolution]] | <math>x_1[n] * x_2[n]</math> | <math>X_1(z) \, X_2(z)</math> | <math>\begin{align} \mathcal{Z}\{x_1(n)*x_2(n)\} &= \mathcal{Z} \left \{\sum_{l=-\infty}^{\infty} x_1[l]x_2[n-l] \right \} \\ &= \sum_{n=-\infty}^{\infty} \left [\sum_{l=-\infty}^{\infty} x_1[l]x_2[n-l] \right ]z^{-n}\\ &=\sum_{l=-\infty}^{\infty} x_1[l] \left [\sum_{n=-\infty}^{\infty} x_2[n-l]z^{-n} \right ]\\ &= \left [\sum_{l=-\infty}^{\infty} x_1(l)z^{-l} \right ] \! \!\left [\sum_{n=-\infty}^{\infty} x_2[n]z^{-n} \right ] \\ &=X_1(z)X_2(z) \end{align} </math> | Contains ROC<sub>1</sub> β© ROC<sub>2</sub> |- ! [[Cross-correlation]] | <math>r_{x_1,x_2}=x_1^*[-n] * x_2[n]</math> | <math>R_{x_1,x_2}(z)=X_1^*(\tfrac{1}{z^*})X_2(z)</math> | | Contains the intersection of ROC of <math>X_1(\tfrac{1}{z^*})</math> and <math>X_2(z)</math> |- ! Accumulation |<math>\sum_{k=-\infty}^{n} x[k]</math> |<math> \frac{1}{1-z^{-1}}X(z)</math> |<math>\begin{align} \sum_{n=-\infty}^{\infty}\sum_{k=-\infty}^{n} x[k] z^{-n}&=\sum_{n=-\infty}^{\infty}(x[n]+\cdots)z^{-n}\\ &=X(z) \left (1+z^{-1}+z^{-2}+\cdots \right )\\ &=X(z) \sum_{j=0}^{\infty}z^{-j} \\ &=X(z) \frac{1}{1-z^{-1}}\end{align}</math> | |- ! [[Multiplication]] | <math>x_1[n] \, x_2[n]</math> | <math>\frac{1}{j2\pi}\oint_C X_1(v)X_2(\tfrac{z}{v})v^{-1}\mathrm{d}v</math> | | At least <math>r_{1l}r_{2l}<|z|<r_{1u}r_{2u}</math> |- |} '''[[Parseval's theorem]]''' :<math>\sum_{n=-\infty}^{\infty} x_1[n]x^*_2[n] \quad = \quad \frac{1}{j2\pi}\oint_C X_1(v)X^*_2(\tfrac{1}{v^*})v^{-1}\mathrm{d}v</math> '''[[Initial value theorem]]''': If <math>x[n]</math> is causal, then :<math>x[0]=\lim_{z\to \infty}X(z).</math> '''[[Final value theorem]]''': If the poles of <math>(z - 1) X(z)</math> are inside the unit circle, then :<math>x[\infty]=\lim_{z\to 1}(z-1)X(z).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)