Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
3D rotation group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Baker–Campbell–Hausdorff formula == {{main|Baker–Campbell–Hausdorff formula}} Suppose {{mvar|X}} and {{mvar|Y}} in the Lie algebra are given. Their exponentials, {{math|exp(''X'')}} and {{math|exp(''Y'')}}, are rotation matrices, which can be multiplied. Since the exponential map is a surjection, for some {{mvar|Z}} in the Lie algebra, {{math|1=exp(''Z'') = exp(''X'') exp(''Y'')}}, and one may tentatively write :<math> Z = C(X, Y),</math> for {{mvar|C}} some expression in {{math|''X''}} and {{math|''Y''}}. When {{math|exp(''X'')}} and {{math|exp(''Y'')}} commute, then {{math|1=''Z'' = ''X'' + ''Y''}}, mimicking the behavior of complex exponentiation. The general case is given by the more elaborate [[BCH formula]], a series expansion of nested Lie brackets.<ref>{{Harvnb|Hall|2003|loc=Ch. 3}}; {{Harvnb|Varadarajan|1984|loc=§2.15}}</ref> For matrices, the Lie bracket is the same operation as the [[commutator]], which monitors lack of commutativity in multiplication. This general expansion unfolds as follows,<ref group="nb">For a full proof, see [[Derivative of the exponential map]]. Issues of convergence of this series to the correct element of the Lie algebra are here swept under the carpet. Convergence is guaranteed when <math>\|X\| + \|Y\| < \log 2 </math> and <math>\|Z\| < \log 2.</math> The series may still converge even if these conditions are not fulfilled. A solution always exists since {{math|exp}} is onto in the cases under consideration.</ref> :<math>Z = C(X, Y) = X + Y + \frac{1}{2} [X, Y] + \tfrac{1}{12} [X, [X, Y]] - \frac{1}{12} [Y, [X, Y]] + \cdots.</math> The infinite expansion in the BCH formula for {{math|SO(3)}} reduces to a compact form, :<math>Z = \alpha X + \beta Y + \gamma[X, Y],</math> for suitable trigonometric function coefficients {{math|(''α'', ''β'', ''γ'')}}. {{Hidden begin| titlestyle = color:green;background:lightgrey;|title=The trigonometric coefficients}} The {{math|(''α'', ''β'', ''γ'')}} are given by :<math>\alpha = \phi \cot\left(\frac{\phi}{2}\right) \gamma, \qquad \beta = \theta \cot\left(\frac{\theta}{2}\right)\gamma, \qquad \gamma = \frac{\sin^{-1}d}{d}\frac{c}{\theta \phi},</math> where :<math>\begin{align} c &= \frac{1}{2}\sin\theta\sin\phi - 2\sin^2\frac{\theta}{2}\sin^2\frac{\phi}{2}\cos(\angle(u, v)),\quad a = c \cot\left(\frac{\phi}{2}\right), \quad b = c \cot\left(\frac{\theta}{2}\right), \\ d &= \sqrt{a^2 + b^2 + 2ab\cos(\angle(u, v)) + c^2 \sin^2(\angle(u, v))}, \end{align}</math> for :<math>\theta = \|X\|,\quad \phi = \|Y\|,\quad \angle(u, v) = \cos^{-1}\frac{\langle X, Y\rangle}{\|X\|\|Y\|}.</math> The inner product is the [[Hilbert–Schmidt inner product]] and the norm is the associated norm. Under the hat-isomorphism, :<math>\langle u, v\rangle = \frac{1}{2}\operatorname{Tr}X^\mathrm{T}Y,</math> which explains the factors for {{mvar|θ}} and {{mvar|φ}}. This drops out in the expression for the angle. {{see also|Rotation formalisms in three dimensions#Rodrigues parameters and Gibbs representation}} {{Hidden end}} It is worthwhile to write this composite rotation generator as :<math>\alpha X + \beta Y + \gamma[X, Y]\underset{\mathfrak{so}(3)}{=} X + Y + \frac{1}{2} [X, Y] + \frac{1}{12} [X, [X, Y]] - \frac{1}{12} [Y, [X, Y]] + \cdots,</math> to emphasize that this is a ''Lie algebra identity''. The above identity holds for all [[faithful representation]]s of {{math|𝖘𝖔(3)}}. The [[kernel (algebra)|kernel]] of a Lie algebra homomorphism is an [[ideal (Lie algebra)|ideal]], but {{math|𝖘𝖔(3)}}, being [[simple (abstract algebra)|simple]], has no nontrivial ideals and all nontrivial representations are hence faithful. It holds in particular in the doublet or spinor representation. The same explicit formula thus follows in a simpler way through Pauli matrices, cf. the [[Pauli matrices#Exponential of a Pauli vector|2×2 derivation for SU(2)]]. {{Hidden begin| titlestyle = color:green;background:lightgrey;|title=The SU(2) case}} The [[Pauli matrices#Exponential of a Pauli vector|Pauli vector version]] of the same BCH formula is the somewhat simpler group composition law of SU(2), :<math> e^{i a'\left(\hat{u} \cdot \vec{\sigma}\right)}e^{i b'\left(\hat{v} \cdot \vec{\sigma}\right)} = \exp\left( \frac{c'}{\sin c'} \sin a' \sin b' \left(\left(i\cot b'\hat{u} + i \cot a' \hat{v}\right)\cdot\vec{\sigma} + \frac{1}{2} \left[i \hat{u} \cdot \vec{\sigma}, i \hat{v} \cdot \vec{\sigma}\right]\right) \right), </math> where :<math>\cos c' = \cos a' \cos b' - \hat{u} \cdot\hat{v} \sin a' \sin b',</math> the [[spherical law of cosines]]. (Note {{math| '' a', b', c' ''}} are angles, not the {{math|''a'', ''b'', ''c''}} above.) This is manifestly of the same format as above, :<math>Z = \alpha' X + \beta' Y + \gamma' [X, Y],</math> with :<math>X = i a'\hat{u} \cdot \mathbf{\sigma}, \quad Y = ib'\hat{v} \cdot \mathbf{\sigma} \in \mathfrak{su}(2),</math> so that :<math>\begin{align} \alpha' &= \frac{c'}{\sin c'}\frac{\sin a'}{a'}\cos b' \\ \beta' &= \frac{c'}{\sin c'}\frac{\sin b'}{b'}\cos a' \\ \gamma' &= \frac{1}{2}\frac{c'}{\sin c'}\frac{\sin a'}{a'}\frac{\sin b'}{b'}. \end{align}</math> For uniform normalization of the generators in the Lie algebra involved, express the Pauli matrices in terms of {{mvar|t}}-matrices, {{math|'''''σ''''' → 2''i'' '''''t'''''}}, so that :<math>a' \mapsto -\frac{\theta}{2}, \quad b' \mapsto - \frac{\phi}{2}.</math> To verify then these are the same coefficients as above, compute the ratios of the coefficients, :<math>\begin{align} \frac{\alpha'}{\gamma'} &= \theta\cot\frac{\theta}{2} &= \frac{\alpha}{\gamma}\\ \frac{\beta'}{\gamma'} &= \phi\cot\frac{\phi}{2} &= \frac{\beta}{\gamma}. \end{align}</math> Finally, {{math|1= ''γ'' = ''γ' ''}} given the identity {{math|1= ''d'' = sin 2''c'''}}. {{Hidden end}} For the general {{math|''n'' × ''n''}} case, one might use Ref.<ref>{{harvnb|Curtright|Fairlie|Zachos|2014}} Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group.</ref> {{Hidden begin| titlestyle = color:green;background:lightgrey;|title=The quaternion case}} The [[quaternion]] formulation of the composition of two rotations R<sub>B</sub> and R<sub>A</sub> also yields directly the [[Axis of rotation|rotation axis]] and angle of the composite rotation R<sub>C</sub> = R<sub>B</sub>R<sub>A</sub>. Let the quaternion associated with a spatial rotation R is constructed from its [[Axis of rotation|rotation axis]] '''S''' and the rotation angle ''φ'' this axis. The associated quaternion is given by, :<math>S = \cos\frac{\phi}{2} + \sin\frac{\phi}{2} \mathbf{S}.</math> Then the composition of the rotation R<sub>R</sub> with R<sub>A</sub> is the rotation R<sub>C</sub> = R<sub>B</sub>R<sub>A</sub> with rotation axis and angle defined by the product of the quaternions :<math>A = \cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}\mathbf{A}\quad\text{ and }\quad B = \cos\frac{\beta}{2} + \sin\frac{\beta}{2}\mathbf{B},</math> that is :<math> C = \cos\frac{\gamma}{2} + \sin\frac{\gamma}{2}\mathbf{C} = \left(\cos\frac{\beta}{2} + \sin\frac{\beta}{2}\mathbf{B}\right)\left(\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}\mathbf{A}\right).</math> Expand this product to obtain :<math> \cos\frac{\gamma}{2} + \sin\frac{\gamma}{2} \mathbf{C} = \left( \cos\frac{\beta}{2}\cos\frac{\alpha}{2} - \sin\frac{\beta}{2}\sin\frac{\alpha}{2} \mathbf{B}\cdot \mathbf{A} \right) + \left( \sin\frac{\beta}{2}\cos\frac{\alpha}{2} \mathbf{B} + \sin\frac{\alpha}{2}\cos\frac{\beta}{2} \mathbf{A} + \sin\frac{\beta}{2}\sin\frac{\alpha}{2} \mathbf{B} \times \mathbf{A} \right). </math> Divide both sides of this equation by the identity, which is the [[spherical law of cosines|law of cosines on a sphere]], :<math>\cos\frac{\gamma}{2} = \cos\frac{\beta}{2}\cos\frac{\alpha}{2} - \sin\frac{\beta}{2}\sin\frac{\alpha}{2} \mathbf{B}\cdot \mathbf{A},</math> and compute :<math>\tan\frac{\gamma}{2} \mathbf{C} = \frac{\tan\frac{\beta}{2}\mathbf{B} + \tan\frac{\alpha}{2} \mathbf{A} + \tan\frac{\beta}{2}\tan\frac{\alpha}{2} \mathbf{B} \times \mathbf{A}}{1 - \tan\frac{\beta}{2}\tan\frac{\alpha}{2} \mathbf{B} \cdot \mathbf{A}}.</math> This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two rotations. He derived this formula in 1840 (see page 408).<ref>Rodrigues, O. (1840), Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et la variation des coordonnées provenant de ses déplacements con- sidérés indépendamment des causes qui peuvent les produire, Journal de Mathématiques Pures et Appliquées de Liouville 5, 380–440.</ref> The three rotation axes '''A''', '''B''', and '''C''' form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation angles. {{Hidden end}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)