Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Allan variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Non-overlapped variable Ο estimators=== Taking the time-series and skipping past ''n'' β 1 samples, a new (shorter) time-series would occur with ''Ο''<sub>0</sub> as the time between the adjacent samples, for which the Allan variance could be calculated with the simple estimators. These could be modified to introduce the new variable ''n'' such that no new time-series would have to be generated, but rather the original time series could be reused for various values of ''n''. The estimators become :<math>\sigma_y^2(n\tau_0, M) = \operatorname{AVAR}(n\tau_0, M) = \frac{1}{2\frac{M-1}{n}} \sum_{i=0}^{\frac{M-1}{n} - 1}\left(\bar{y}_{ni+n} - \bar{y}_{ni}\right)^2</math> with <math>n \le \frac{M - 1}{2}</math>, and for the time series: :<math>\sigma_y^2(n\tau_0, N) = \operatorname{AVAR}(n\tau_0, N) = \frac{1}{2n^2\tau_0^2\left(\frac{N - 1}{n} - 1\right)} \sum_{i=0}^{\frac{N-1}{n} - 2}\left(x_{ni+2n} - 2x_{ni+n} + x_{ni}\right)^2</math> with <math>n \le \frac{N - 1}{2}</math>. These estimators have a significant drawback in that they will drop a significant amount of sample data, as only 1/''n'' of the available samples is being used.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)