Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Barycentric coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Barycentric coordinates on tetrahedra== Barycentric coordinates may be easily extended to [[coordinate space|three dimensions]]. The 3D [[simplex]] is a [[tetrahedron]], a [[polyhedron]] having four triangular faces and four vertices. Once again, the four barycentric coordinates are defined so that the first vertex <math>\mathbf{r}_1</math> maps to barycentric coordinates <math>\lambda = (1,0,0,0)</math>, <math>\mathbf{r}_2 \to (0,1,0,0)</math>, etc. This is again a linear transformation, and we may extend the above procedure for triangles to find the barycentric coordinates of a point <math>\mathbf{r}</math> with respect to a tetrahedron: <math display=block> \left(\begin{matrix}\lambda_1 \\ \lambda_2 \\ \lambda_3\end{matrix}\right) = \mathbf{T}^{-1} ( \mathbf{r}-\mathbf{r}_4 ) </math> where <math>\mathbf{T}</math> is now a 3Γ3 matrix: <math display=block> \mathbf{T} = \left(\begin{matrix} x_1-x_4 & x_2-x_4 & x_3-x_4\\ y_1-y_4 & y_2-y_4 & y_3-y_4\\ z_1-z_4 & z_2-z_4 & z_3-z_4 \end{matrix}\right) </math> and <math>\lambda_4 = 1 - \lambda_1 - \lambda_2 - \lambda_3</math>with the corresponding Cartesian coordinates:<math display="block">\begin{align} x &= \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + (1-\lambda_1-\lambda_2-\lambda_3)x_4 \\ y &= \lambda_1 y_1 + \,\lambda_2 y_2 + \lambda_3 y_3 + (1-\lambda_1-\lambda_2-\lambda_3)y_4 \\ z &= \lambda_1 z_1 + \,\lambda_2 z_2 + \lambda_3 z_3 + (1-\lambda_1-\lambda_2-\lambda_3)z_4 \end{align}</math>Once again, the problem of finding the barycentric coordinates has been reduced to [[matrix inverse|inverting a 3Γ3 matrix]]. 3D barycentric coordinates may be used to decide if a point lies inside a tetrahedral volume, and to interpolate a function within a tetrahedral mesh, in an analogous manner to the 2D procedure. Tetrahedral meshes are often used in [[finite element analysis]] because the use of barycentric coordinates can greatly simplify 3D interpolation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)