Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bessel function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Asymptotic forms == The Bessel functions have the following [[asymptotic analysis|asymptotic]] forms. For small arguments <math>0<z\ll\sqrt{\alpha+1}</math>, one obtains, when <math>\alpha</math> is not a negative integer:<ref name=p360/> <math display="block">J_\alpha(z) \sim \frac{1}{\Gamma(\alpha+1)} \left( \frac{z}{2} \right)^\alpha.</math> When {{mvar|α}} is a negative integer, we have <math display="block">J_\alpha(z) \sim \frac{(-1)^{\alpha}}{(-\alpha)!} \left( \frac{2}{z} \right)^\alpha.</math> For the Bessel function of the second kind we have three cases: <math display="block">Y_\alpha(z) \sim \begin{cases} \dfrac{2}{\pi} \left( \ln \left(\dfrac{z}{2} \right) + \gamma \right) & \text{if } \alpha = 0 \\[1ex] -\dfrac{\Gamma(\alpha)}{\pi} \left( \dfrac{2}{z} \right)^\alpha + \dfrac{1}{\Gamma(\alpha+1)} \left(\dfrac{z}{2} \right)^\alpha \cot(\alpha \pi) & \text{if } \alpha \text{ is a positive integer (one term dominates unless } \alpha \text{ is imaginary)}, \\[1ex] -\dfrac{(-1)^\alpha\Gamma(-\alpha)}{\pi} \left( \dfrac{z}{2} \right)^\alpha & \text{if } \alpha\text{ is a negative integer,} \end{cases}</math> where {{mvar|γ}} is the [[Euler–Mascheroni constant]] (0.5772...). For large real arguments {{math|''z'' ≫ {{abs|''α''<sup>2</sup> − {{sfrac|1|4}}}}}}, one cannot write a true asymptotic form for Bessel functions of the first and second kind (unless {{mvar|α}} is [[half-integer]]) because they have [[zero of a function|zeros]] all the way out to infinity, which would have to be matched exactly by any asymptotic expansion. However, for a given value of {{math|arg ''z''}} one can write an equation containing a term of order {{math|{{abs|''z''}}<sup>−1</sup>}}:<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_364.htm p. 364, 9.2.1].</ref> <math display="block">\begin{align} J_\alpha(z) &= \sqrt{\frac{2}{\pi z}}\left(\cos \left(z-\frac{\alpha\pi}{2} - \frac{\pi}{4}\right) + e^{\left|\operatorname{Im}(z)\right|}\mathcal{O}\left(|z|^{-1}\right)\right) && \text{for } \left|\arg z\right| < \pi, \\ Y_\alpha(z) &= \sqrt{\frac{2}{\pi z}}\left(\sin \left(z-\frac{\alpha\pi}{2} - \frac{\pi}{4}\right) + e^{\left|\operatorname{Im}(z)\right|}\mathcal{O}\left(|z|^{-1}\right)\right) && \text{for } \left|\arg z\right| < \pi. \end{align}</math> (For {{math|1=''α'' = {{sfrac|1|2}}}}, the last terms in these formulas drop out completely; see the spherical Bessel functions above.) The asymptotic forms for the Hankel functions are: <math display="block">\begin{align} H_\alpha^{(1)}(z) &\sim \sqrt{\frac{2}{\pi z}}e^{i\left(z-\frac{\alpha\pi}{2}-\frac{\pi}{4}\right)} && \text{for } -\pi < \arg z < 2\pi, \\ H_\alpha^{(2)}(z) &\sim \sqrt{\frac{2}{\pi z}}e^{-i\left(z-\frac{\alpha\pi}{2}-\frac{\pi}{4}\right)} && \text{for } -2\pi < \arg z < \pi. \end{align}</math> These can be extended to other values of {{math|arg ''z''}} using equations relating {{math|''H''{{su|b=''α''|p=(1)}}(''ze''<sup>''im''π</sup>)}} and {{math|''H''{{su|b=''α''|p=(2)}}(''ze''<sup>''im''π</sup>)}} to {{math|''H''{{su|b=''α''|p=(1)}}(''z'')}} and {{math|''H''{{su|b=''α''|p=(2)}}(''z'')}}.<ref>[[NIST]] [[Digital Library of Mathematical Functions]], Section [https://dlmf.nist.gov/10.11#E1 10.11].</ref> It is interesting that although the Bessel function of the first kind is the average of the two Hankel functions, {{math|''J<sub>α</sub>''(''z'')}} is not asymptotic to the average of these two asymptotic forms when {{mvar|z}} is negative (because one or the other will not be correct there, depending on the {{math|arg ''z''}} used). But the asymptotic forms for the Hankel functions permit us to write asymptotic forms for the Bessel functions of first and second kinds for ''complex'' (non-real) {{mvar|z}} so long as {{math|{{abs|''z''}}}} goes to infinity at a constant phase angle {{math|arg ''z''}} (using the square root having positive real part): <math display="block">\begin{align} J_\alpha(z) &\sim \frac{1}{\sqrt{2\pi z}} e^{i\left(z-\frac{\alpha\pi}{2}-\frac{\pi}{4}\right)} && \text{for } -\pi < \arg z < 0, \\[1ex] J_\alpha(z) &\sim \frac{1}{\sqrt{2\pi z}} e^{-i\left(z-\frac{\alpha\pi}{2}-\frac{\pi}{4}\right)} && \text{for } 0 < \arg z < \pi, \\[1ex] Y_\alpha(z) &\sim -i\frac{1}{\sqrt{2\pi z}} e^{i\left(z-\frac{\alpha\pi}{2}-\frac{\pi}{4}\right)} && \text{for } -\pi < \arg z < 0, \\[1ex] Y_\alpha(z) &\sim i\frac{1}{\sqrt{2\pi z}} e^{-i\left(z-\frac{\alpha\pi}{2}-\frac{\pi}{4}\right)} && \text{for } 0 < \arg z < \pi. \end{align}</math> For the modified Bessel functions, [[Hermann Hankel|Hankel]] developed [[asymptotic expansion]]s as well:<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_377.htm p. 377, 9.7.1].</ref><ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_378.htm p. 378, 9.7.2].</ref> <math display="block">\begin{align} I_\alpha(z) &\sim \frac{e^z}{\sqrt{2\pi z}} \left(1 - \frac{4 \alpha^2 - 1}{8z} + \frac{\left(4 \alpha^2 - 1\right) \left(4 \alpha^2 - 9\right)}{2! (8z)^2} - \frac{\left(4 \alpha^2 - 1\right) \left(4 \alpha^2 - 9\right) \left(4 \alpha^2 - 25\right)}{3! (8z)^3} + \cdots \right) &&\text{for }\left|\arg z\right|<\frac{\pi}{2}, \\ K_\alpha(z) &\sim \sqrt{\frac{\pi}{2z}} e^{-z} \left(1 + \frac{4 \alpha^2 - 1}{8z} + \frac{\left(4 \alpha^2 - 1\right) \left(4 \alpha^2 - 9\right)}{2! (8z)^2} + \frac{\left(4 \alpha^2 - 1\right) \left(4 \alpha^2 - 9\right) \left(4 \alpha^2 - 25\right)}{3! (8z)^3} + \cdots \right) &&\text{for }\left|\arg z\right|<\frac{3\pi}{2}. \end{align}</math> There is also the asymptotic form (for large real <math>z</math>)<ref>[https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-81/issue-4/The-Kosterlitz-Thouless-transition-in-two-dimensional-abelian-spin-systems/cmp/1103920388.full Fröhlich and Spencer 1981 Appendix B]</ref> <math display="block">\begin{align} I_\alpha(z) = \frac{1}{\sqrt{2\pi z}\sqrt[4]{1+\frac{\alpha^2}{z^2}}}\exp\left(-\alpha \operatorname{arcsinh}\left(\frac{\alpha}{z}\right) + z\sqrt{1+\frac{\alpha^2}{z^2}}\right)\left(1 + \mathcal{O}\left(\frac{1}{z \sqrt{1+\frac{\alpha^2}{z^2}}}\right)\right). \end{align}</math> When {{math|1=''α'' = {{sfrac|1|2}}}}, all the terms except the first vanish, and we have <math display="block">\begin{align} I_{{1}/{2}}(z) &= \sqrt{\frac{2}{\pi}} \frac{\sinh(z)}{\sqrt{z}} \sim \frac{e^z}{\sqrt{2\pi z}} && \text{for }\left|\arg z\right| < \tfrac{\pi}{2}, \\[1ex] K_{{1}/{2}}(z) &= \sqrt{\frac{\pi}{2}} \frac{e^{-z}}{\sqrt{z}}. \end{align}</math> For small arguments <math>0<|z|\ll\sqrt{\alpha + 1}</math>, we have <math display="block">\begin{align} I_\alpha(z) &\sim \frac{1}{\Gamma(\alpha+1)} \left( \frac{z}{2} \right)^\alpha, \\[1ex] K_\alpha(z) &\sim \begin{cases} -\ln \left (\dfrac{z}{2} \right ) - \gamma & \text{if } \alpha=0 \\[1ex] \frac{\Gamma(\alpha)}{2} \left( \dfrac{2}{z} \right)^\alpha & \text{if } \alpha > 0 \end{cases} \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)