Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binary relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Particular relations == * ''Proposition'': If <math>R</math> is a [[surjective relation]] and <math>R^\mathsf{T}</math> is its transpose, then <math>I \subseteq R^\textsf{T} R</math> where <math>I</math> is the <math>m \times m</math> identity relation. * ''Proposition'': If <math>R</math> is a [[serial relation]], then <math>I \subseteq R R^\textsf{T}</math> where <math>I</math> is the <math>n \times n</math> identity relation. === Difunctional === {{anchor|difunctional}} The idea of a difunctional relation is to partition objects by distinguishing attributes, as a generalization of the concept of an [[equivalence relation]]. One way this can be done is with an intervening set <math>Z = \{ x, y, z, \ldots \}</math> of [[Indicator (research)|indicator]]s. The partitioning relation <math>R = F G^\textsf{T}</math> is a [[composition of relations]] using {{em|functional}} relations <math>F \subseteq A \times Z \text{ and } G \subseteq B \times Z.</math> [[Jacques Riguet]] named these relations '''difunctional''' since the composition <math>F G^\mathsf{T}</math> involves functional relations, commonly called ''partial functions''. In 1950 Riguet showed that such relations satisfy the inclusion:<ref>{{cite journal |last1=Riguet |first1=Jacques|author-link=Jacques Riguet|journal=Comptes rendus |date=January 1950 |url=https://gallica.bnf.fr/ark:/12148/bpt6k3182n/f2001.item |language=fr|title=Quelques proprietes des relations difonctionelles|volume=230|pages=1999–2000}}</ref> : <math display=block>R R^\textsf{T} R \subseteq R</math> In [[automata theory]], the term '''rectangular relation''' has also been used to denote a difunctional relation. This terminology recalls the fact that, when represented as a [[logical matrix]], the columns and rows of a difunctional relation can be arranged as a [[block matrix]] with rectangular blocks of ones on the (asymmetric) main diagonal.<ref name="Büchi1989">{{cite book|author=Julius Richard Büchi|title=Finite Automata, Their Algebras and Grammars: Towards a Theory of Formal Expressions|year=1989|publisher=Springer Science & Business Media|isbn=978-1-4613-8853-1|pages=35–37|author-link=Julius Richard Büchi}}</ref> More formally, a relation <math>R</math> on <math>X \times Y</math> is difunctional if and only if it can be written as the union of Cartesian products <math>A_i \times B_i</math>, where the <math>A_i</math> are a partition of a subset of <math>X</math> and the <math>B_i</math> likewise a partition of a subset of <math>Y</math>.<ref>{{cite journal |last1=East |first1=James |last2=Vernitski |first2=Alexei |title=Ranks of ideals in inverse semigroups of difunctional binary relations |journal=Semigroup Forum |date=February 2018 |volume=96 |issue=1 |pages=21–30 |doi=10.1007/s00233-017-9846-9|arxiv=1612.04935|s2cid=54527913 }}</ref> Using the notation <math>\{y \mid xRy\} = xR</math>, a difunctional relation can also be characterized as a relation <math>R</math> such that wherever <math>x_1 R</math> and <math>x_2 R</math> have a non-empty intersection, then these two sets coincide; formally <math>x_1 \cap x_2 \neq \varnothing</math> implies <math>x_1 R = x_2 R.</math><ref name="BrinkKahl1997">{{cite book|author1=Chris Brink|author2=Wolfram Kahl|author3=Gunther Schmidt|title=Relational Methods in Computer Science|year=1997|publisher=Springer Science & Business Media|isbn=978-3-211-82971-4|page=200}}</ref> In 1997 researchers found "utility of binary decomposition based on difunctional dependencies in [[database]] management."<ref>Ali Jaoua, Nadin Belkhiter, Habib Ounalli, and Theodore Moukam (1997) "Databases", pages 197–210 in ''Relational Methods in Computer Science'', edited by Chris Brink, Wolfram Kahl, and [[Gunther Schmidt]], [[Springer Science & Business Media]] {{isbn|978-3-211-82971-4}}</ref> Furthermore, difunctional relations are fundamental in the study of [[bisimulation]]s.<ref>{{Cite book | doi = 10.1007/978-3-662-44124-4_7 | chapter = Coalgebraic Simulations and Congruences| title = Coalgebraic Methods in Computer Science| volume = 8446| pages = 118| series = [[Lecture Notes in Computer Science]]| year = 2014| last1 = Gumm | first1 = H. P. | last2 = Zarrad | first2 = M. | isbn = 978-3-662-44123-7}}</ref> In the context of homogeneous relations, a [[partial equivalence relation]] is difunctional. === Ferrers type === A [[strict order]] on a set is a homogeneous relation arising in [[order theory]]. In 1951 [[Jacques Riguet]] adopted the ordering of an [[integer partition]], called a [[Ferrers diagram]], to extend ordering to binary relations in general.<ref>J. Riguet (1951) "Les relations de Ferrers", [[Comptes Rendus]] 232: 1729,30</ref> The corresponding logical matrix of a general binary relation has rows which finish with a sequence of ones. Thus the dots of a Ferrer's diagram are changed to ones and aligned on the right in the matrix. An algebraic statement required for a Ferrers type relation R is <math display="block">R \bar{R}^\textsf{T} R \subseteq R.</math> If any one of the relations <math>R, \bar{R}, R^\textsf{T}</math> is of Ferrers type, then all of them are. <ref name="Schmidt p.77">{{cite book|last1=Schmidt|first1=Gunther|last2=Ströhlein|first2=Thomas|title=Relations and Graphs: Discrete Mathematics for Computer Scientists|url={{google books |plainurl=y |id=ZgarCAAAQBAJ|paged=277}}|date=2012|publisher=Springer Science & Business Media|isbn=978-3-642-77968-8|authorlink1=Gunther Schmidt |page=77}}</ref> === Contact === Suppose <math>B</math> is the [[power set]] of <math>A</math>, the set of all [[subset]]s of <math>A</math>. Then a relation <math>g</math> is a '''contact relation''' if it satisfies three properties: # <math>\text{for all } x \in A, Y = \{ x \} \text{ implies } xgY.</math> # <math>Y \subseteq Z \text{ and } xgY \text{ implies } xgZ.</math> # <math>\text{for all } y \in Y, ygZ \text{ and } xgY \text{ implies } xgZ.</math> The [[set membership]] relation, <math>\epsilon = </math> "is an element of", satisfies these properties so <math>\epsilon</math> is a contact relation. The notion of a general contact relation was introduced by [[Georg Aumann]] in 1970.<ref>{{cite journal | url=https://www.zobodat.at/publikation_volumes.php?id=56359 | author=Georg Aumann | title=Kontakt-Relationen | journal=Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften München | volume=1970 | number=II | pages=67–77 | year=1971 }}</ref><ref>Anne K. Steiner (1970) [https://mathscinet.ams.org/mathscinet-getitem?mr=0309040 Review:''Kontakt-Relationen''] from [[Mathematical Reviews]]</ref> In terms of the calculus of relations, sufficient conditions for a contact relation include <math display="block">C^\textsf{T} \bar{C} \subseteq \ni \bar{C} \equiv C \overline{\ni \bar{C}} \subseteq C,</math> where <math>\ni</math> is the converse of set membership (<math>\in</math>).<ref name=GS11/>{{rp|280}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)