Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Leibniz notation === {{Main|Leibniz's notation}} A common notation, introduced by Leibniz, for the derivative in the example above is :<math> \begin{align} y&=x^2 \\ \frac{dy}{dx}&=2x. \end{align} </math> In an approach based on limits, the symbol {{math|{{sfrac|''dy''|'' dx''}}}} is to be interpreted not as the quotient of two numbers but as a shorthand for the limit computed above.<ref name=":4" />{{Rp|page=74}} Leibniz, however, did intend it to represent the quotient of two infinitesimally small numbers, {{math|''dy''}} being the infinitesimally small change in {{math|''y''}} caused by an infinitesimally small change {{math|'' dx''}} applied to {{math|''x''}}. We can also think of {{math|{{sfrac|''d''|'' dx''}}}} as a differentiation operator, which takes a function as an input and gives another function, the derivative, as the output. For example: :<math> \frac{d}{dx}(x^2)=2x. </math> In this usage, the {{math|''dx''}} in the denominator is read as "with respect to {{math|''x''}}".<ref name=":4" />{{Rp|page=79}} Another example of correct notation could be: :<math>\begin{align} g(t) &= t^2 + 2t + 4 \\ {d \over dt}g(t) &= 2t + 2 \end{align} </math> Even when calculus is developed using limits rather than infinitesimals, it is common to manipulate symbols like {{math|'' dx''}} and {{math|''dy''}} as if they were real numbers; although it is possible to avoid such manipulations, they are sometimes notationally convenient in expressing operations such as the [[total derivative]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)