Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Canonical transformation conditions == === Canonical transformation relations === From: <math>K = H + \frac{\partial G}{\partial t} </math>, calculate <math display="inline">\frac{\partial (K-H)}{\partial P} </math>: <math display="block">\begin{align} \left( \frac{\partial (K-H)}{\partial P}\right)_{Q,P,t} &= \frac{\partial K}{\partial P} - \frac{\partial H}{\partial p}\frac{\partial p}{\partial P} - \frac{\partial H}{\partial q}\frac{\partial q}{\partial P} - \frac{\partial H}{\partial t}\left( \frac{\partial t}{\partial P}\right)_{Q,P,t} \\ &= \dot{Q} + \dot{p} \frac{\partial q}{\partial P} - \dot{q}\frac{\partial p}{\partial P} \\ &= \frac{\partial Q}{\partial t} + \frac{\partial Q}{\partial q} \cdot \dot{q} + \frac{\partial Q}{\partial p} \cdot \dot{p} + \dot{p} \frac{\partial q}{\partial P} - \dot{q}\frac{\partial p}{\partial P} \\ &=\dot{q}\left(\frac{\partial Q}{\partial q} - \frac{\partial p}{\partial P}\right)+\dot{p}\left(\frac{\partial q}{\partial P} +\frac{\partial Q}{\partial p} \right) + \frac{\partial Q}{\partial t} \end{align}</math> Since the left hand side is <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac \partial {\partial P}\left( \frac{\partial G}{\partial t} \right) \bigg |_{Q,P,t} </math> which is independent of dynamics of the particles, equating coefficients of <math display="inline">\dot q </math> and <math display="inline">\dot p </math> to zero, canonical transformation rules are obtained. This step is equivalent to equating the left hand side as <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac{\partial Q}{\partial t} </math>. Since the left hand side is <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac \partial {\partial P}\left( \frac{\partial G}{\partial t} \right) \bigg |_{Q,P,t} </math> which is independent of dynamics of the particles, equating coefficients of <math display="inline">\dot q </math> and <math display="inline">\dot p </math> to zero, canonical transformation rules are obtained. This step is equivalent to equating the left hand side as <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac{\partial Q}{\partial t} </math>. Similarly: <math display="block">\begin{align} \left(\frac{\partial (K-H)}{\partial Q}\right)_{Q,P,t} &= \frac{\partial K}{\partial Q} - \frac{\partial H}{\partial p}\frac{\partial p}{\partial Q} - \frac{\partial H}{\partial q}\frac{\partial q}{\partial Q} - \frac{\partial H}{\partial t}\left(\frac{\partial t}{\partial Q}\right)_{Q,P,t} \\ &= -\dot{P} + \dot{p} \frac{\partial q}{\partial Q} - \dot{q}\frac{\partial p}{\partial Q} \\ &= -\frac{\partial P}{\partial t} -\frac{\partial P}{\partial q} \cdot \dot{q} - \frac{\partial P}{\partial p} \cdot \dot{p} + \dot{p} \frac{\partial q}{\partial Q} - \dot{q}\frac{\partial p}{\partial Q} \\ &=-\left(\dot{q}\left(\frac{\partial P}{\partial q} + \frac{\partial p}{\partial Q}\right)+\dot{p}\left(\frac{\partial P}{\partial p} -\frac{\partial q}{\partial Q} \right) + \frac{\partial P}{\partial t} \right) \end{align} </math> Similarly the canonical transformation rules are obtained by equating the left hand side as <math display="inline">\frac{\partial (K-H)}{\partial Q} = - \frac{\partial P}{\partial t} </math>. The above two relations can be combined in matrix form as: <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math> (which will also retain same form for extended canonical transformation) where the result <math display="inline">\frac{\partial G}{\partial t} = K-H </math>, has been used. The canonical transformation relations are hence said to be equivalent to <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math> in this context. The canonical transformation relations can now be restated to include time dependance: <math display="block">\begin{align} \left( \frac{\partial Q_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= - \left( \frac{\partial q_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial Q_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \left( \frac{\partial p_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align} </math> <math display="block">\begin{align} \left( \frac{\partial P_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \left( \frac{\partial q_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial P_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= - \left( \frac{\partial p_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align}</math> Since <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac{\partial Q}{\partial t} </math> and <math display="inline">\frac{\partial (K-H)}{\partial Q} = - \frac{\partial P}{\partial t} </math>, if {{math|'''Q'''}} and {{math|'''P'''}} do not explicitly depend on time, <math display="inline">K= H + \frac{\partial G}{\partial t}(t)</math> can be taken. The analysis of restricted canonical transformations is hence consistent with this generalization. === Symplectic condition === Applying transformation of co-ordinates formula for <math> \nabla_\eta H = M^T \nabla_\varepsilon H </math>, in Hamiltonian's equations gives: <math display="block">\dot{\eta}=J\nabla_\eta H =J ( M^T \nabla_\varepsilon H) </math> Similarly for <math display="inline">\dot{\varepsilon} </math>: <math display="block">\dot{\varepsilon}=M\dot{\eta} + \frac{\partial \varepsilon}{\partial t} =M J M^T \nabla_\varepsilon H + \frac{\partial \varepsilon}{\partial t} </math> or: <math display="block">\dot{\varepsilon}=J \nabla_\varepsilon K = J \nabla_\varepsilon H + J \nabla_\varepsilon \left( \frac{\partial G}{\partial t}\right) </math> Where the last terms of each equation cancel due to <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math> condition from canonical transformations. Hence leaving the symplectic relation: <math display="inline">M J M^T = J </math> which is also equivalent with the condition <math display="inline">M^T J M = J </math>. It follows from the above two equations that the symplectic condition implies the equation <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math>, from which the indirect conditions can be recovered. Thus, symplectic conditions and indirect conditions can be said to be equivalent in the context of using generating functions. === Invariance of the Poisson and Lagrange brackets === Since <math display="inline">\mathcal P_{ij}(\varepsilon) = \{ \varepsilon_i,\varepsilon_j\}_\eta =(M J M^T )_{ij} = J_{ij} </math> and <math display="inline">\mathcal L_{ij}(\eta) =[\eta_i,\eta_j]_\varepsilon=(M^T J M )_{ij} = J_{ij} </math> where the symplectic condition is used in the last equalities. Using <math display="inline">\{\varepsilon_i,\varepsilon_j\}_\varepsilon=[\eta_i,\eta_j]_\eta = J_{ij} </math>, the equalities <math display="inline">\{ \varepsilon_i,\varepsilon_j\}_\eta= \{ \varepsilon_i,\varepsilon_j\}_\varepsilon </math> and <math display="inline">[\eta_i,\eta_j]_\varepsilon= [\eta_i,\eta_j]_\eta </math> are obtained which imply the invariance of Poisson and Lagrange brackets.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)