Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Digamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Inequalities== When {{math|''x'' > 0}}, the function :<math>\ln x - \frac{1}{2x} - \psi(x)</math> is completely monotonic and in particular positive. This is a consequence of [[Bernstein's theorem on monotone functions]] applied to the integral representation coming from Binet's first integral for the gamma function. Additionally, by the convexity inequality <math>1 + t \le e^t</math>, the integrand in this representation is bounded above by <math>e^{-tz}/2</math>. {{not a typo|Consequently}} :<math>\frac{1}{x} - \ln x + \psi(x)</math> is also completely monotonic. It follows that, for all {{math|''x'' > 0}}, :<math>\ln x - \frac{1}{x} \le \psi(x) \le \ln x - \frac{1}{2x}.</math> This recovers a theorem of Horst Alzer.<ref>{{cite journal |jstor=2153660 |url=https://www.ams.org/journals/mcom/1997-66-217/S0025-5718-97-00807-7/S0025-5718-97-00807-7.pdf|title=On Some Inequalities for the Gamma and Psi Functions |last1=Alzer |first1=Horst |journal=Mathematics of Computation |year=1997 |volume=66 |issue=217 |pages=373–389 |doi=10.1090/S0025-5718-97-00807-7 }}</ref> Alzer also proved that, for {{math|''s'' ∈ (0, 1)}}, :<math>\frac{1 - s}{x + s} < \psi(x + 1) - \psi(x + s),</math> Related bounds were obtained by Elezovic, Giordano, and Pecaric, who proved that, for {{math|''x'' > 0 }}, :<math>\ln(x + \tfrac{1}{2}) - \frac{1}{x} < \psi(x) < \ln(x + e^{-\gamma}) - \frac{1}{x},</math> where <math>\gamma=-\psi(1)</math> is the [[Euler–Mascheroni constant]].<ref>{{cite journal |doi=10.7153/MIA-03-26|title=The best bounds in Gautschi's inequality |year=2000 |last1=Elezović |first1=Neven |last2=Giordano |first2=Carla |last3=Pečarić |first3=Josip |journal=Mathematical Inequalities & Applications |issue=2 |pages=239–252 |doi-access=free }}</ref> The constants (<math>0.5</math> and <math>e^{-\gamma}\approx0.56</math>) appearing in these bounds are the best possible.<ref>{{cite journal | arxiv=0902.2524 | doi=10.1515/anly-2014-0001 | title=Sharp inequalities for the psi function and harmonic numbers | year=2014 | last1=Guo | first1=Bai-Ni | last2=Qi | first2=Feng | journal=Analysis | volume=34 | issue=2 | s2cid=16909853 }}</ref> The [[mean value theorem]] implies the following analog of [[Gautschi's inequality]]: If {{math|''x'' > ''c''}}, where {{math|''c'' ≈ 1.461}} is the unique positive real root of the digamma function, and if {{math|''s'' > 0}}, then :<math>\exp\left((1 - s)\frac{\psi'(x + 1)}{\psi(x + 1)}\right) \le \frac{\psi(x + 1)}{\psi(x + s)} \le \exp\left((1 - s)\frac{\psi'(x + s)}{\psi(x + s)}\right).</math> Moreover, equality holds if and only if {{math|''s'' {{=}} 1}}.<ref>{{cite journal |doi=10.1016/j.jmaa.2013.05.045 |doi-access=free|title=Exponential, gamma and polygamma functions: Simple proofs of classical and new inequalities |year=2013 |last1=Laforgia |first1=Andrea |last2=Natalini |first2=Pierpaolo |journal=Journal of Mathematical Analysis and Applications |volume=407 |issue=2 |pages=495–504 }}</ref> Inspired by the harmonic mean value inequality for the classical gamma function, Horzt Alzer and Graham Jameson proved, among other things, a harmonic mean-value inequality for the digamma function: <math> -\gamma \leq \frac{2 \psi(x) \psi(\frac{1}{x})}{\psi(x)+\psi(\frac{1}{x})} </math> for <math>x>0</math> Equality holds if and only if <math>x=1</math>.<ref>{{cite journal |last1=Alzer |first1=Horst |last2=Jameson |first2=Graham |s2cid=41966777 |year=2017 |title=A harmonic mean inequality for the digamma function and related results |journal=[[Rendiconti del Seminario Matematico della Università di Padova]] |pages=203–209 |doi=10.4171/RSMUP/137-10 |volume=70 |issue=201 |issn=0041-8994 |lccn=50046633 |oclc=01761704|url=https://eprints.lancs.ac.uk/id/eprint/136736/1/5d0aee750965cd339d8a0965d80de4c18b68.pdf }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)