Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete cosine transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== DCT-II === :<math>X_k = \sum_{n=0}^{N-1} x_n \cos \left[\, \tfrac{\,\pi\,}{N} \left( n + \tfrac{1}{2} \right) k \, \right] \qquad \text{ for } ~ k = 0,\ \dots\ N-1 ~.</math> The DCT-II is probably the most commonly used form, and is often simply referred to as the ''DCT''.<ref name="pubDCT"/><ref name="pubRaoYip"/> This transform is exactly equivalent (up to an overall scale factor of 2) to a DFT of <math>4N</math> real inputs of even symmetry, where the even-indexed elements are zero. That is, it is half of the DFT of the <math>4N</math> inputs <math> y_n ,</math> where <math> y_{2n} = 0</math>, <math> y_{2n+1} = x_n </math> for <math>0 \leq n < N</math>, <math>y_{2N} = 0</math>, and <math>y_{4N-n} = y_n</math> for <math>0 < n < 2N</math>. DCT-II transformation is also possible using <math>2N</math> signal followed by a multiplication by half shift. This is demonstrated by [[John Makhoul|Makhoul]].{{cn|date=April 2025}} Some authors further multiply the <math>X_0</math> term by <math>1/\sqrt{N\,} \,</math> and multiply the rest of the matrix by an overall scale factor of <math display="inline">\sqrt{{2}/{N}}</math> (see below for the corresponding change in DCT-III). This makes the DCT-II matrix [[orthogonal matrix|orthogonal]], but breaks the direct correspondence with a real-even DFT of half-shifted input. This is the normalization used by [[Matlab]].<ref>{{cite web |url=https://www.mathworks.com/help/signal/ref/dct.html |title=Discrete cosine transform - MATLAB dct |website=www.mathworks.com |access-date=2019-07-11}}</ref> In many applications, such as [[JPEG]], the scaling is arbitrary because scale factors can be combined with a subsequent computational step (e.g. the [[Quantization (signal processing)|quantization]] step in JPEG<ref>{{cite book |isbn=9780442012724 |title=JPEG: Still Image Data Compression Standard |last1=Pennebaker |first1=William B. |last2=Mitchell |first2=Joan L. |date=31 December 1992|publisher=Springer }}</ref>), and a scaling can be chosen that allows the DCT to be computed with fewer multiplications.<ref>{{cite journal |url=https://search.ieice.org/bin/summary.php?id=e71-e_11_1095 |first1=Y. |last1=Arai |first2=T. |last2=Agui |first3=M. |last3=Nakajima |title=A fast DCT-SQ scheme for images |journal=IEICE Transactions |volume=71 |issue=11 |pages= 1095β1097 |year=1988}}</ref><ref>{{cite journal |doi=10.1016/j.sigpro.2008.01.004 |title=Type-II/III DCT/DST algorithms with reduced number of arithmetic operations |year=2008 |last1=Shao |first1=Xuancheng |last2=Johnson |first2=Steven G. |journal=Signal Processing |volume=88 |issue=6 |pages=1553β1564 |arxiv=cs/0703150 |bibcode=2008SigPr..88.1553S |s2cid=986733}}</ref> The DCT-II implies the boundary conditions: <math>x_n</math> is even around <math>n = -1/2</math> and even around <math>n = N - 1/2 \,</math>; <math> X_k </math> is even around <math>k = 0</math> and odd around <math>k = N</math>.<!--[[User:Kvng/RTH]]-->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)