Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geologic time scale
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Table of geologic time== {{More citations needed section|date=November 2023}} The following table summarises the major events and characteristics of the divisions making up the geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the [[Phanerozoic]] Eon looks longer than the rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons{{Efn|name=Precam|group=note}} collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic).<ref name="Shields_2022_pre-Cryogenian" /><ref>{{cite web |title=Geological time scale |url=https://www.digitalatlasofancientlife.org/learn/geological-time/geological-time-scale/ |access-date=January 17, 2022 |work=Digital Atlas of Ancient Life |publisher=Paleontological Research Institution}}</ref> The use of subseries/subepochs has been ratified by the ICS.<ref name ="Aubry_2022_subseries"/> While some regional terms are still in use,<ref name="GTS2012_Precambrian" /> the table of geologic time conforms to the [[nomenclature]], ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart.<ref name="ICS_statutes" /><ref name="ICS_IGTS">{{cite web |title=International Commission on Stratigraphy |url=https://stratigraphy.org/ |accessdate=5 June 2022 |work=International Geological Time Scale}}</ref> The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering a machine-readable [[Resource Description Framework]]/[[Web Ontology Language]] representation of the time scale, which is available through the [[Commission for the Management and Application of Geoscience Information]] [[GeoSciML]] project as a service<ref name="web_GTSelements">{{cite web |title=Geologic Timescale Elements in the International Chronostratigraphic Chart |url=http://resource.geosciml.org/classifier/ics/ischart/ |access-date=2014-08-03}}</ref> and at a [[SPARQL]] end-point.<ref name="web_Cox_SPARQL_GTS">{{cite web |last=Cox |first=Simon J. D. |title=SPARQL endpoint for CGI timescale service |url=http://resource.geosciml.org/sparql/isc2014 |url-status=dead |archive-url=https://archive.today/20140806164132/http://resource.geosciml.org/sparql/isc2014 |archive-date=2014-08-06 |access-date=2014-08-03}}</ref><ref name="Cox_2014">{{cite journal |last1=Cox |first1=Simon J. D. |last2=Richard |first2=Stephen M. |year=2014 |title=A geologic timescale ontology and service |journal=Earth Science Informatics |volume=8 |pages=5–19 |doi=10.1007/s12145-014-0170-6 |s2cid=42345393}}</ref> {{sticky header}} {| class="wikitable collapsible sticky-header" style="clear:both;margin:0; font-size:95%" !Eonothem/<br/>Eon !Erathem/<br/>Era !System/<br/>Period !Series/<br/>Epoch !Stage/<br/>Age !Major events !Start, million years ago<br/>{{efn|The dates and uncertainties quoted are according to the [[International Commission on Stratigraphy]] International Chronostratigraphic chart (v2024/12). An <sup>*</sup> indicates boundaries where a [[Global Boundary Stratotype Section and Point]] has been internationally agreed.|name="ICC-dates"|group=note}} |- | rowspan="102" style="background:{{period color|Phanerozoic}}" |[[Phanerozoic]] | rowspan="24" style="background:{{period color|Cenozoic}}" |[[Cenozoic]]<br/>{{efn|name=Tertiary|group=note}} | rowspan="7" style="background:{{period color|Quaternary}}" |[[Quaternary]] | rowspan="3" style="background:{{period color|Holocene}}" |[[Holocene]] | style="background:#fcf0f2" |[[Meghalayan]] |[[4.2-kiloyear event]], [[Austronesian peoples|Austronesian expansion]], increasing [[Industrial Revolution|industrial]] [[Carbon dioxide in the Earth's atmosphere|CO<sub>2</sub>]]. | style="background:#fcf0f2" |{{Period start|meghalayan}} {{Period start error|meghalayan}}<sup>*</sup> |- | style="background:#fcf0e8" |[[Northgrippian]] |[[8.2-kiloyear event]], [[Holocene climatic optimum]]. [[Sea level]] flooding of [[Doggerland]] and [[Sundaland]]. [[Sahara]] becomes a desert. End of Stone Age and start of [[recorded history]]. Humans finally expand into the [[Arctic Archipelago]] and [[Greenland]]. | style="background:#fcf0e8" |{{Period start|northgrippian}} {{Period start error|northgrippian}}<sup>*</sup> |- | style="background:#fcf0de" |[[Greenlandian]] |Climate stabilises. Current [[interglacial]] and [[Holocene extinction]] begins. [[Neolithic Revolution|Agriculture begins]]. Humans spread across the [[wet Sahara]] and [[Arabia]], the [[Extreme North]], and the Americas (mainland and the [[Caribbean]]). | style="background:#fcf0de" |{{Period start|greenlandian}} {{Period start error|greenlandian}}<sup>*</sup> |- | rowspan="4" style="background:{{period color|Pleistocene}}" |[[Pleistocene]] | style="background:{{period color|Upper Pleistocene}}" |[[Late Pleistocene|Upper/Late]] ''('[[Tarantian]]')'' |[[Eemian]] [[interglacial]], [[last glacial period]], ending with [[Younger Dryas]]. [[Toba catastrophe theory|Toba eruption]]. [[Quaternary extinction|Pleistocene megafauna (including the last terror birds) extinction]]. Humans expand into [[Near Oceania]] and the [[Americas]]. | style="background:{{period color|upper Pleistocene}}" |{{Period start|Late pleistocene}} {{Period start error|Late pleistocene}} |- | style="background:{{period color|Middle Pleistocene}}" |[[Chibanian]] |[[Mid-Pleistocene Transition]] occurs, high amplitude [[100,000-year problem|100 ka]] [[glacial period|glacial cycles]]. Rise of [[Homo sapiens]]. | style="background:{{period color|Middle Pleistocene}}" |{{Period start|middle pleistocene}}{{Period start error|middle pleistocene}}<sup>*</sup> |- | style="background:{{period color|Calabrian}}" |[[Early Pleistocene|Calabrian]] |Further cooling of the climate. Giant [[terror birds]] go extinct. Spread of [[Homo erectus]] across [[Afro-Eurasia]]. | style="background:{{period color|Calabrian}}" |{{Period start|calabrian}} {{Period start error|calabrian}}<sup>*</sup> |- | style="background:{{period color|Gelasian}}" |[[Gelasian]] |Start of [[Quaternary glaciation]]s and unstable climate.<ref name="Hoag_2017">{{Cite journal |last1=Hoag |first1=Colin |last2=Svenning |first2=Jens-Christian |date=2017-10-17 |title=African Environmental Change from the Pleistocene to the Anthropocene |url=https://www.annualreviews.org/doi/10.1146/annurev-environ-102016-060653 |journal=Annual Review of Environment and Resources |language=en |volume=42 |issue=1 |pages=27–54 |doi=10.1146/annurev-environ-102016-060653 |issn=1543-5938 |access-date=5 June 2022 |archive-date=1 May 2022 |archive-url=https://web.archive.org/web/20220501144059/https://www.annualreviews.org/doi/10.1146/annurev-environ-102016-060653 |url-status=dead }}</ref> Rise of the [[Pleistocene megafauna]] and [[Homo habilis]]. | style="background:{{period color|Gelasian}}" |{{Period start|gelasian}} {{Period start error|geliasian}}<sup>*</sup> |- | rowspan="8" style="background:{{period color|Neogene}}" |[[Neogene]] | rowspan="2" style="background:{{period color|Pliocene}}" |[[Pliocene]] | style="background:{{period color|Piacenzian}}" |[[Piacenzian]] |[[Greenland ice sheet]] develops<ref name="Bartoli_2005">{{cite journal |last1=Bartoli |first1=G |last2=Sarnthein |first2=M |last3=Weinelt |first3=M |last4=Erlenkeuser |first4=H |last5=Garbe-Schönberg |first5=D |last6=Lea |first6=D.W |year=2005 |title=Final closure of Panama and the onset of northern hemisphere glaciation |journal=Earth and Planetary Science Letters |volume=237 |issue=1–2 |pages=33–44 |bibcode=2005E&PSL.237...33B |doi=10.1016/j.epsl.2005.06.020 |doi-access=free}}</ref> as the cold slowly intensifies towards the Pleistocene. Atmospheric {{O2}} and {{CO2}} content reaches present-day levels while landmasses also reach their current locations (e.g. the [[Isthmus of Panama]] joins the [[North America|North]] and [[South America]]s, while allowing [[Great American Interchange|a faunal interchange]]). The last non-marsupial metatherians go extinct. [[Australopithecus]] common in East Africa; [[Stone Age]] begins.<ref name="Tyson_2009">{{cite web |last=Tyson |first=Peter |date=October 2009 |title=NOVA, Aliens from Earth: Who's who in human evolution |url=https://www.pbs.org/wgbh/nova/hobbit/tree-nf.html |access-date=2009-10-08 |publisher=PBS}}</ref> | style="background:{{period color|Piacenzian}}" |{{Period start|piacenzian}} {{Period start error|piacenzian}}<sup>*</sup> |- | style="background:{{period color|Zanclean}}" |[[Zanclean]] |[[Zanclean flood]]ing of the [[Mediterranean Basin]]. Cooling climate continues from the Miocene. First [[Equus (genus)|equines]] and [[Elephantimorpha|elephantines]]. [[Ardipithecus]] in Africa.<ref name="Tyson_2009" /> | style="background:{{period color|Zanclean}}" |{{Period start|zanclean}} {{Period start error|zanclean}}<sup>*</sup> |- | rowspan="6" style="background:{{period color|Miocene}}" |[[Miocene]] | style="background:{{period color|Messinian}}" |[[Messinian]] | rowspan="2" |[[Messinian Event]] with hypersaline lakes in empty [[Mediterranean Basin]]. Sahara desert formation begins. [[Greenhouse and Icehouse Earth|Moderate icehouse climate]], punctuated by [[ice age]]s and re-establishment of [[East Antarctic Ice Sheet]]. [[Choristodera|Choristoderes]], the last non-crocodilian [[Sebecosuchia|crocodylomorphs]] and [[Creodonta|creodonts]] go extinct. After [[gorilla–human last common ancestor|separating from gorilla ancestors]], [[chimpanzee–human last common ancestor|chimpanzee and human ancestors]] gradually separate; [[Sahelanthropus]] and [[Orrorin]] in Africa. | style="background:{{period color|Messinian}}" |{{Period start|messinian}} {{Period start error|messinian}}<sup>*</sup> |- | style="background:{{period color|Tortonian}}" |[[Tortonian]] | style="background:{{period color|Tortonian}}" |{{Period start|tortonian}} {{Period start error|tortonian}}<sup>*</sup> |- | style="background:{{period color|Serravallian}}" |[[Serravallian]] | rowspan="2" |Middle Miocene climate optimum temporarily provides a warm climate.<ref name="Gannon_2013_BryantUniHons">{{Cite journal |last=Gannon |first=Colin |date=2013-04-26 |title=Understanding the Middle Miocene Climatic Optimum: Evaluation of Deuterium Values (δD) Related to Precipitation and Temperature |url=https://digitalcommons.bryant.edu/honors_science/11 |journal=Honors Projects in Science and Technology}}</ref> Extinctions in [[middle Miocene disruption]], decreasing shark diversity. First [[hippo]]s. Ancestor of [[Hominidae|great apes]]. | style="background:{{period color|Serravallian}}" |{{Period start|serravallian}} {{Period start error|serravallian}}<sup>*</sup> |- | style="background:{{period color|Langhian}}" |[[Langhian]] | style="background:{{period color|Langhian}}" |{{Period start|langhian}} {{Period start error|langhian}}<sup>*</sup> |- | style="background:{{period color|Burdigalian}}" |[[Burdigalian]] | rowspan="2" |[[Orogeny]] in [[Northern Hemisphere]]. Start of [[Kaikoura Orogeny]] forming [[Southern Alps in New Zealand]]. Widespread forests slowly [[Photosynthesis|draw in]] massive amounts of {{CO2}}, gradually lowering the level of atmospheric {{CO2}} from 650 [[ppmv]] down to around 100 ppmv during the Miocene.<ref name="Royer_2006">{{cite journal |last1=Royer |first1=Dana L. |year=2006 |title=CO<sub>2</sub>-forced climate thresholds during the Phanerozoic |url=http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |url-status=dead |journal=Geochimica et Cosmochimica Acta |volume=70 |issue=23 |pages=5665–75 |bibcode=2006GeCoA..70.5665R |doi=10.1016/j.gca.2005.11.031 |archive-url=https://web.archive.org/web/20190927033455/http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |archive-date=27 September 2019 |access-date=6 August 2015}}</ref>{{efn|For more information on this, see [[Atmosphere of Earth#Evolution of Earth's atmosphere]], [[Carbon dioxide in the Earth's atmosphere]], and [[Climate variability and change|climate change]]. Specific graphs of reconstructed {{CO2}} levels over the past ~550, 65, and 5 million years can be seen at [[:File:Phanerozoic Carbon Dioxide.png]], [[:File:65 Myr Climate Change.png]], [[:File:Five Myr Climate Change.png]], respectively.|name="atmospheric-carbon-dioxide"|group=note}} Modern [[bird]] and mammal families become recognizable. The last of the primitive whales go extinct. [[Poaceae|Grasses]] become ubiquitous. Ancestor of [[ape]]s, including humans.<ref name="web_LS_2017">{{cite web |date=10 August 2017 |title=Here's What the Last Common Ancestor of Apes and Humans Looked Like |url=https://www.livescience.com/60093-last-common-ancestor-of-apes-humans-revealed.html |website=[[Live Science]]}}</ref><ref name="Nengo_2017">{{Cite journal |last1=Nengo |first1=Isaiah |last2=Tafforeau |first2=Paul |last3=Gilbert |first3=Christopher C. |last4=Fleagle |first4=John G. |last5=Miller |first5=Ellen R. |last6=Feibel |first6=Craig |last7=Fox |first7=David L. |last8=Feinberg |first8=Josh |last9=Pugh |first9=Kelsey D. |last10=Berruyer |first10=Camille |last11=Mana |first11=Sara |date=2017 |title=New infant cranium from the African Miocene sheds light on ape evolution |url=http://www.nature.com/articles/nature23456 |journal=Nature |language=en |volume=548 |issue=7666 |pages=169–174 |doi=10.1038/nature23456 |pmid=28796200 |bibcode=2017Natur.548..169N |s2cid=4397839 |issn=0028-0836}}</ref> Afro-Arabia collides with Eurasia, fully forming the [[Alpide Belt]] and closing the Tethys Ocean, while allowing a faunal interchange. At the same time, Afro-Arabia splits into [[Africa]] and [[Arabian Plate|West Asia]]. | style="background:{{period color|Burdigalian}}" |{{Period start|burdigalian}} {{Period start error|burdigalian}} |- | style="background:{{period color|Aquitanian}}" |[[Aquitanian age|Aquitanian]] | style="background:{{period color|Aquitanian}}" |{{Period start|aquitanian}} {{Period start error|anquitanian}}<sup>*</sup> |- | rowspan="9" style="background:{{period color|Paleogene}}" |[[Paleogene]] | rowspan="2" style="background:{{period color|Oligocene}}" |[[Oligocene]] | style="background:{{period color|Chattian}}" |[[Chattian]] | rowspan="2" |[[Eocene–Oligocene extinction event|Grande Coupure]] extinction. Start of widespread [[Late Cenozoic Ice Age|Antarctic glaciation]].<ref name="Deconto_2003">{{Cite journal |last1=Deconto |first1=Robert M. |last2=Pollard |first2=David |year=2003 |title=Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 |journal=Nature |volume=421 |issue=6920 |pages=245–249 |bibcode=2003Natur.421..245D |doi=10.1038/nature01290 |pmid=12529638 |s2cid=4326971|url=http://doc.rero.ch/record/16546/files/PAL_E3220.pdf }}</ref> Rapid [[evolution]] and diversification of fauna, especially [[mammal]]s (e.g. first [[Macropodiformes|macropods]] and [[Pinnipedia|seals]]). Major evolution and dispersal of modern types of [[flowering plant]]s. [[Cimolesta]]ns, miacoids and condylarths go extinct. First [[Cetacea|neocetes]] (modern, fully aquatic whales) appear. | style="background:{{period color|Chattian}}" |{{Period start|chattian}} {{Period start error|chattian}}<sup>*</sup> |- | style="background:{{period color|Rupelian}}" |[[Rupelian]] | style="background:{{period color|Rupelian}}" |{{Period start|rupelian}} {{Period start error|rupelian}}<sup>*</sup> |- | rowspan="4" style="background:{{period color|Eocene}}" |[[Eocene]] | style="background:{{period color|Priabonian}}" |[[Priabonian]] | rowspan="3" |[[Greenhouse and Icehouse Earth|Moderate, cooling climate]]. Archaic [[mammal]]s (e.g. [[creodont]]s, [[Miacoidea|miacoids]], "[[condylarth]]s" etc.) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. [[Archaeoceti|Primitive whales]] and [[Sirenia|sea cows]] diversify after returning to water. [[Bird]]s continue to diversify. First [[kelp]], [[Diprotodontia|diprotodonts]], [[bear]]s and [[simian]]s. The multituberculates and leptictidans go extinct by the end of the epoch. Reglaciation of Antarctica and formation of its [[ice cap]]; End of [[Laramide Orogeny|Laramide]] and [[Sevier orogeny|Sevier Orogenies]] of the [[Rocky Mountains]] in North America. [[Hellenic orogeny|Hellenic Orogeny]] begins in Greece and [[Aegean Sea]]. | style="background:{{period color|Priabonian}}" |{{Period start|priabonian}} {{Period start error|priabonian}}<sup>*</sup> |- | style="background:{{period color|Bartonian}}" |[[Bartonian]] | style="background:{{period color|Bartonian}}" |{{Period start|bartonian}} {{Period start error|bartonian}} |- | style="background:{{period color|Lutetian}}" |[[Lutetian]] | style="background:{{period color|Lutetian}}" |{{Period start|lutetian}} {{Period start error|lutetian}}<sup>*</sup> |- | style="background:{{period color|Ypresian}}" |[[Ypresian]] |Two transient events of global warming ([[Paleocene–Eocene Thermal Maximum|PETM]] and [[Eocene Thermal Maximum 2|ETM-2]]) and warming climate until the [[Eocene Climatic Optimum]]. The [[Azolla event]] decreased {{CO2}} levels from 3500 [[Parts-per notation|ppm]] to 650 ppm, setting the stage for a long period of cooling.<ref name="Royer_2006" />{{efn|name="atmospheric-carbon-dioxide"|group=note}} [[Indian subcontinent|Greater India]] collides with Eurasia and starts [[Geology of the Himalaya|Himalayan Orogeny]] (allowing a [[biotic interchange]]) while Eurasia completely separates from North America, creating the [[North Atlantic Ocean]]. [[Maritime Southeast Asia]] diverges from the rest of Eurasia. First [[passerine]]s, [[ruminant]]s, [[pangolin]]s, [[bat]]s and true [[primate]]s. | style="background:{{period color|Ypresian}}" |{{Period start|ypresian}} {{Period start error|ypresian}}<sup>*</sup> |- | rowspan="3" style="background:{{period color|Paleocene}}" |[[Paleocene]] | style="background:{{period color|Thanetian}}" |[[Thanetian]] | rowspan="3" |Starts with [[Chicxulub impact]] and the [[K–Pg extinction event]], wiping out all non-avian dinosaurs and pterosaurs, most marine reptiles, many other vertebrates (e.g. many Laurasian metatherians), most cephalopods (only [[Nautilidae]] and [[Coleoidea]] survived) and many other invertebrates. [[Greenhouse and Icehouse Earth|Climate tropical]]. [[Mammal]]s and [[bird]]s (avians) diversify rapidly into a number of lineages following the extinction event (while the marine revolution stops). Multituberculates and the first [[rodent]]s widespread. First large birds (e.g. [[ratites]] and [[terror birds]]) and mammals (up to bear or small hippo size). [[Alpine orogeny]] in Europe and Asia begins. First [[proboscidea]]ns and [[plesiadapiformes]] (stem primates) appear. [[Australidelphia|Some marsupials]] migrate to Australia. | style="background:{{period color|Thanetian}}" |{{Period start|thanetian}} {{Period start error|thanetian}}<sup>*</sup> |- | style="background:{{period color|Selandian}}" |[[Selandian]] | style="background:{{period color|Selandian}}" |{{Period start|selandian}} {{Period start error|selandian}}<sup>*</sup> |- | style="background:{{period color|Danian}}" |[[Danian]] | style="background:{{period color|Danian}}" |{{Period start|danian}} {{Period start error|danian}}<sup>*</sup> |- | rowspan="30" style="background:{{period color|Mesozoic}}" |[[Mesozoic]] | rowspan="12" style="background:{{period color|Cretaceous}}" |[[Cretaceous]] | rowspan="6" style="background:{{period color|Late Cretaceous}}" |[[Late Cretaceous|Upper/Late]] | style="background:{{period color|Maastrichtian}}" |[[Maastrichtian]] | rowspan="12" |[[Flowering plant]]s proliferate (after developing many features since the Carboniferous), along with new types of [[insect]]s, while other seed plants (gymnosperms and seed ferns) decline. More modern [[teleost]] fish begin to appear. [[Ammonoid]]s, [[Belemnoidea|belemnites]], [[rudist]] [[bivalve]]s, [[sea urchin]]s and [[sponge]]s all common. Many new types of [[dinosaur]]s (e.g. [[Tyrannosauridae|tyrannosaurs]], [[Titanosauridae|titanosaurs]], [[Hadrosauridae|hadrosaurs]], and [[Ceratopsidae|ceratopsids]]) evolve on land, while [[crocodilia]]ns appear in water and probably cause the last temnospondyls to die out; and [[mosasaur]]s and modern types of sharks appear in the sea. The revolution started by marine reptiles and sharks reaches its peak, though ichthyosaurs vanish a few million years after being heavily reduced at the [[Bonarelli Event]]. Toothed and [[Neornithes|toothless avian birds]] coexist with pterosaurs. Modern [[monotreme]]s, [[metatheria]]n (including [[marsupial]]s, who migrate to South America) and [[eutheria]]n (including [[placental]]s, [[leptictida]]ns and [[cimolesta]]ns) mammals appear while the last non-mammalian cynodonts die out. First [[terrestrial crab]]s. Many snails become terrestrial. Further breakup of Gondwana creates [[South America]], [[Africa|Afro-]][[West Asia|Arabia]], [[Antarctica]], [[Oceania]], [[Madagascar]], [[Indian subcontinent|Greater India]], and the [[South Atlantic]], [[Indian Ocean|Indian]] and [[Antarctic Ocean]]s and the islands of the Indian (and some of the Atlantic) Ocean. Beginning of [[Laramide Orogeny|Laramide]] and [[Sevier Orogeny|Sevier Orogenies]] of the [[Rocky Mountains]]. [[Atmosphere of Earth|Atmospheric]] oxygen and carbon dioxide levels similar to present day. [[Acritarch]]s disappear. Climate initially warm, but later it cools. | style="background:{{period color|Maastrichtian}}" |{{Period start|maastrichtian}} {{Period start error|maastrichtian}}<sup>*</sup> |- | style="background:{{period color|Campanian}}" |[[Campanian]] | style="background:{{period color|Campanian}}" |{{Period start|campanian}} {{Period start error|campanian}}<sup>*</sup> |- | style="background:{{period color|Santonian}}" |[[Santonian]] | style="background:{{period color|Santonian}}" |{{Period start|santonian}} {{Period start error|santonian}}<sup>*</sup> |- | style="background:{{period color|Coniacian}}" |[[Coniacian]] | style="background:{{period color|Coniacian}}" |{{Period start|coniacian}} {{Period start error|coniacian}}<sup>*</sup> |- | style="background:{{period color|Turonian}}" |[[Turonian]] | style="background:{{period color|Turonian}}" |{{Period start|turonian}} {{Period start error|turonian}}<sup>*</sup> |- | style="background:{{period color|Cenomanian}}" |[[Cenomanian]] | style="background:{{period color|Cenomanian}}" |{{Period start|cenomanian}} {{Period start error|cenomanian}}<sup>*</sup> |- | rowspan="6" style="background:{{period color|Early Cretaceous}}" |[[Early Cretaceous|Lower/Early]] | style="background:{{period color|Albian}}" |[[Albian]] | style="background:{{period color|Albian}}" |~{{Period start|albian}} {{Period start error|albian}}<sup>*</sup> |- | style="background:{{period color|Aptian}}" |[[Aptian]] | style="background:{{period color|Aptian}}" |~{{Period start|aptian}} {{Period start error|aptian}} |- | style="background:{{period color|Barremian}}" |[[Barremian]] | style="background:{{period color|Barremian}}" |~{{Period start|barremian}} {{Period start error|barremian}}<sup>*</sup> |- | style="background:{{period color|Hauterivian}}" |[[Hauterivian]] | style="background:{{period color|Hauterivian}}" |~{{Period start|hauterivian}} {{Period start error|hauterivian}}<sup>*</sup> |- | style="background:{{period color|Valanginian}}" |[[Valanginian]] | style="background:{{period color|Valanginian}}" |~{{Period start|valanginian}} {{Period start error|valanginian}}<sup>*</sup> |- | style="background:{{period color|Berriasian}}" |[[Berriasian]] | style="background:{{period color|Berriasian}}" |~{{Period start|berriasian}} {{Period start error|berriasian}} |- | rowspan="11" style="background:{{period color|Jurassic}}" |[[Jurassic]] | rowspan="3" style="background:{{period color|Late Jurassic}}" |[[Late Jurassic|Upper/Late]] | style="background:{{period color|Tithonian}}" |[[Tithonian]] | rowspan="11" |Climate becomes humid again. [[Gymnosperm]]s (especially [[conifer]]s, [[cycad]]s and [[cycadeoid]]s) and [[fern]]s common. [[Dinosaur]]s, including [[sauropod]]s, [[carnosaur]]s, [[stegosaur]]s and [[coelurosaur]]s, become the dominant land vertebrates. Mammals diversify into [[Shuotheriidae|shuotheriids]], [[australosphenida]]ns, [[eutriconodont]]s, [[multituberculate]]s, [[symmetrodont]]s, [[dryolestid]]s and [[boreosphenida]]ns but mostly remain small. First [[Avialae|birds]], [[Squamata|lizards, snakes]] and [[turtle]]s. First [[brown algae]], [[Batoidea|rays]], [[shrimp]]s, [[crab]]s and [[lobster]]s. [[Parvipelvia]]n ichthyosaurs and [[plesiosaur]]s diverse. Rhynchocephalians throughout the world. [[Bivalve]]s, [[ammonoid]]s and [[Belemnoidea|belemnites]] abundant. [[Sea urchin]]s very common, along with [[crinoid]]s, [[starfish]], [[Porifera|sponges]], and [[Terebratulida|terebratulid]] and [[Rhynchonellida|rhynchonellid]] [[brachiopod]]s. Breakup of [[Pangaea]] into [[Laurasia]] and [[Gondwana]], with the latter also breaking into two main parts; the [[Pacific]] and [[Arctic Ocean]]s form. [[Tethys Ocean]] forms. [[Nevadan orogeny]] in North America. [[Rangitata Orogeny|Rangitata]] and [[Cimmerian Orogeny|Cimmerian orogenies]] taper off. Atmospheric {{CO2}} levels 3–4 times the present-day levels (1200–1500 ppmv, compared to today's 400 ppmv<ref name="Royer_2006" />{{efn|name="atmospheric-carbon-dioxide"|group=note}}). [[Crocodylomorph]]s (last pseudosuchians) seek out an aquatic lifestyle. [[Mesozoic marine revolution]] continues from late Triassic. [[Tentaculita]]ns disappear. | style="background:{{period color|Tithonian}}" |{{Period start|tithonian}} {{Period start error|tithonian}} |- | style="background:{{period color|Kimmeridgian}}" |[[Kimmeridgian]] | style="background:{{period color|Kimmeridgian}}" |{{Period start|kimmeridgian}} {{Period start error|kimmeridgian}}<sup>*</sup> |- | style="background:{{period color|Oxfordian}}" |[[Oxfordian stage|Oxfordian]] | style="background:{{period color|Oxfordian}}" |{{Period start|oxfordian}} {{Period start error|oxfordian}} |- | rowspan="4" style="background:{{period color|Middle Jurassic}}" |[[Middle Jurassic|Middle]] | style="background:{{period color|Callovian}}" |[[Callovian]] | style="background:{{period color|Callovian}}" |{{Period start|callovian}} {{Period start error|callovian}} |- | style="background:{{period color|Bathonian}}" |[[Bathonian]] | style="background:{{period color|Bathonian}}" |{{Period start|bathonian}} {{Period start error|bathonian}}<sup>*</sup> |- | style="background:{{period color|Bajocian}}" |[[Bajocian]] | style="background:{{period color|Bajocian}}" |{{Period start|bajocian}} {{Period start error|bajocian}}<sup>*</sup> |- | style="background:{{period color|Aalenian}}" |[[Aalenian]] | style="background:{{period color|Aalenian}}" |{{Period start|aalenian}} {{Period start error|aalenian}}<sup>*</sup> |- | rowspan="4" style="background:{{period color|Early Jurassic}}" |[[Early Jurassic|Lower/Early]] | style="background:{{period color|Toarcian}}" |[[Toarcian]] | style="background:{{period color|Toarcian}}" |{{Period start|toarcian}} {{Period start error|toarcian}}<sup>*</sup> |- | style="background:{{period color|Pliensbachian}}" |[[Pliensbachian]] | style="background:{{period color|Pliensbachian}}" |{{Period start|pliensbachian}} {{Period start error|pliensbachian}}<sup>*</sup> |- | style="background:{{period color|Sinemurian}}" |[[Sinemurian]] | style="background:{{period color|Sinemurian}}" |{{Period start|sinemurian}} {{Period start error|sinemurian}}<sup>*</sup> |- | style="background:{{period color|Hettangian}}" |[[Hettangian]] | style="background:{{period color|Hettangian}}" |{{Period start|hettangian}} {{Period start error|hettangian}}<sup>*</sup> |- | rowspan="7" style="background:{{period color|Triassic}}" |[[Triassic]] | rowspan="3" style="background:{{period color|Late Triassic}}" |[[Late Triassic|Upper/Late]] | style="background:{{period color|Rhaetian}}" |[[Rhaetian]] | rowspan="7" |[[Archosaur]]s dominant on land as [[pseudosuchia]]ns and in the air as [[pterosaur]]s. [[Dinosaur]]s also arise from bipedal archosaurs. [[Ichthyosaur]]s and [[nothosaur]]s (a group of sauropterygians) dominate large marine fauna. [[Cynodont]]s become smaller and nocturnal, eventually becoming the first true [[mammals]], while other remaining synapsids die out. [[Rhynchosaur]]s (archosaur relatives) also common. [[Seed ferns]] called ''[[Dicroidium]]'' remained common in Gondwana, before being replaced by advanced gymnosperms. Many large aquatic [[Temnospondyli|temnospondyl]] amphibians. [[Ceratitida]]n [[ammonoids]] extremely common. [[Scleractinia|Modern corals]] and [[teleost]] fish appear, as do many modern [[insect]] orders and suborders. First [[starfish]]. [[Andes Mountains|Andean Orogeny]] in South America. [[Cimmerian Orogeny]] in Asia. [[Rangitata Orogeny]] begins in New Zealand. [[Hunter-Bowen Orogeny]] in [[Northern Australia]], Queensland and [[New South Wales]] ends, (c. 260–225 Ma). [[Carnian pluvial event]] occurs around 234–232 Ma, allowing the first dinosaurs and [[lepidosaurs]] (including [[rhynchocephalia]]ns) to radiate. [[Triassic–Jurassic extinction event]] occurs 201 Ma, wiping out all [[conodonts]] and the [[Procolophonidae|last parareptiles]], many marine reptiles (e.g. all sauropterygians except [[plesiosaurs]] and all ichthyosaurs except [[parvipelvia]]ns), all [[crocopoda]]ns except crocodylomorphs, pterosaurs, and dinosaurs, and many ammonoids (including the whole [[Ceratitida]]), bivalves, brachiopods, corals and sponges. First [[diatoms]].<ref name="Medlin_1997">{{cite journal |last1=Medlin |first1=L. K. |last2=Kooistra |first2=W. H. C. F. |last3=Gersonde |first3=R. |last4=Sims |first4=P. A. |last5=Wellbrock |first5=U. |year=1997 |title=Is the origin of the diatoms related to the end-Permian mass extinction? |journal=Nova Hedwigia |volume=65 |issue=1–4 |pages=1–11 |doi=10.1127/nova.hedwigia/65/1997/1 |hdl=10013/epic.12689}}</ref> | style="background:{{period color|Rhaetian}}" |~{{Period start|rhaetian}} {{Period start error|rhaetian}} |- | style="background:{{period color|Norian}}" |[[Norian]] | style="background:{{period color|Norian}}" |~{{Period start|norian}} {{Period start error|norian}} |- | style="background:{{period color|Carnian}}" |[[Carnian]] | style="background:{{period color|Carnian}}" |~{{Period start|carnian}} {{Period start error|carnian}}<sup>*</sup> |- | rowspan="2" style="background:{{period color|Middle Triassic}}" |[[Middle Triassic|Middle]] | style="background:{{period color|Ladinian}}" |[[Ladinian]] | style="background:{{period color|Ladinian}}" |~{{Period start|ladinian}} {{Period start error|ladnian}}<sup>*</sup> |- | style="background:{{period color|Anisian}}" |[[Anisian]] | style="background:{{period color|Anisian}}" |{{Period start|anisian}} {{Period start error|anisian}} |- | rowspan="2" style="background:{{period color|Early Triassic}}" |[[Early Triassic|Lower/Early]] | style="background:{{period color|Olenekian}}" |[[Olenekian]] | style="background:{{period color|Olenekian}}" |{{Period start|olenekian}} {{Period start error|olenekian}} |- | style="background:{{period color|Induan}}" |[[Induan]] | style="background:{{period color|Induan}}" |{{Period start|induan}} {{Period start error|induan}}<sup>*</sup> |- | rowspan="48" style="background:{{period color|Paleozoic}}" |[[Paleozoic]] | rowspan="9" style="background:{{period color|Permian}}" |[[Permian]] | rowspan="2" style="background:{{period color|Lopingian}}" |[[Lopingian]] | style="background:{{period color|Changhsingian}}" |[[Changhsingian]] | rowspan="9" |[[Landmass]]es unite into [[supercontinent]] [[Pangaea]], creating the [[Urals]], [[Ouachitas]] and [[Appalachian Mountains|Appalachians]], among other mountain ranges (the superocean [[Panthalassa]] or Proto-Pacific also forms). End of Permo-Carboniferous glaciation. Hot and dry climate. A possible drop in oxygen levels. [[Synapsida|Synapsids]] ([[pelycosaur]]s and [[therapsid]]s) become widespread and dominant, while [[parareptile]]s and [[Temnospondyli|temnospondyl]] [[amphibian]]s remain common, with the latter probably giving rise to [[Lissamphibia|modern amphibians]] in this period. In the mid-Permian, lycophytes are heavily replaced by ferns and seed plants. [[Beetles]] and [[Fly|flies]] evolve. The very large arthropods and non-tetrapod tetrapodomorphs go extinct. Marine life flourishes in warm shallow reefs; [[Productida|productid]] and [[Spiriferida|spiriferid]] brachiopods, bivalves, [[foram]]s, ammonoids (including goniatites), and [[orthocerida]]ns all abundant. [[Sauria|Crown reptiles]] arise from earlier diapsids, and split into the ancestors of [[Lepidosauromorpha|lepidosaurs]], [[Kuehneosauridae|kuehneosaurids]], [[Choristodera|choristoderes]], [[Crocopoda|archosaurs]], [[testudinata]]ns, [[Ichthyosauromorpha|ichthyosaurs]], [[thalattosaurs]], and [[sauropterygia]]ns. Cynodonts evolve from larger therapsids. [[Olson's Extinction]] (273 Ma), [[Capitanian mass extinction event|End-Capitanian extinction]] (260 Ma), and [[Permian–Triassic extinction event]] (252 Ma) occur one after another: more than 80% of life on Earth becomes extinct in the lattermost, including most [[retaria]]n plankton, corals ([[Tabulata]] and [[Rugosa]] die out fully), brachiopods, bryozoans, gastropods, ammonoids (the goniatites die off fully), insects, parareptiles, synapsids, amphibians, and crinoids (only [[Articulata (Crinoidea)|articulates]] survived), and all [[eurypterid]]s, [[trilobite]]s, [[graptolite]]s, [[hyoliths]], [[Edrioasteroidea|edrioasteroid crinozoans]], [[blastoid]]s and [[acanthodians]]. [[Ouachita Orogeny|Ouachita]] and [[Innuitian orogeny|Innuitian orogenies]] in North America. [[Uralian orogeny]] in Europe/Asia tapers off. [[Altai Mountains|Altaid]] orogeny in Asia. [[Hunter-Bowen Orogeny]] on [[Australia (continent)|Australian continent]] begins (c. 260–225 Ma), forming the New England Fold Belt. | style="background:{{period color|Changhsingian}}" |{{Period start|changhsingian}} {{Period start error|changhsingian}}<sup>*</sup> |- | style="background:{{period color|Wuchiapingian}}" |[[Wuchiapingian]] | style="background:{{period color|Wuchiapingian}}" |{{Period start|wuchiapingian}} {{Period start error|wuchiapingian}}<sup>*</sup> |- | rowspan="3" style="background:{{period color|Guadalupian}}" |[[Guadalupian]] | style="background:{{period color|Capitanian}}" |[[Capitanian]] | style="background:{{period color|Capitanian}}" |{{Period start|capitanian}} {{Period start error|capitanian}}<sup>*</sup> |- | style="background:{{period color|Wordian}}" |[[Wordian]] | style="background:{{period color|Wordian}}" |{{Period start|wordian}} {{Period start error|wordian}}<sup>*</sup> |- | style="background:{{period color|Roadian}}" |[[Roadian]] | style="background:{{period color|Roadian}}" |{{Period start|roadian}} {{Period start error|roadian}}<sup>*</sup> |- | rowspan="4" style="background:{{period color|Cisuralian}}" |[[Cisuralian]] | style="background:{{period color|Kungurian}}" |[[Kungurian]] | style="background:{{period color|Kungurian}}" |{{Period start|kungurian}} {{Period start error|kungurian}} |- | style="background:{{period color|Artinskian}}" |[[Artinskian]] | style="background:{{period color|Artinskian}}" |{{Period start|artinskian}} {{Period start error|artinskian}}<sup>*</sup> |- | style="background:{{period color|Sakmarian}}" |[[Sakmarian]] | style="background:{{period color|Sakmarian}}" |{{Period start|sakmarian}} {{Period start error|sakmarian}}<sup>*</sup> |- | style="background:{{period color|Asselian}}" |[[Asselian]] | style="background:{{period color|Asselian}}" |{{Period start|asselian}} {{Period start error|asselian}}<sup>*</sup> |- | rowspan="7" style="background:{{period color|Carboniferous}}" |[[Carboniferous]]<br/>{{efn|The [[Mississippian (geology)|Mississippian]] and [[Pennsylvanian (geology)|Pennsylvanian]] are official sub-systems/sub-periods.|name=CarboSub|group=note}} | rowspan="4" style="background:{{period color|Pennsylvanian}}" |[[Pennsylvanian (geology)|Pennsylvanian]]<br/>{{efn|group=note|name=MissiPenns|This is divided into Lower/Early, Middle, and Upper/Late series/epochs}} | style="background:{{period color|Gzhelian}}" |[[Gzhelian]] | rowspan="4" |[[Pterygota|Winged insects]] radiate suddenly; some (esp. [[Protodonata]] and [[Palaeodictyoptera]]) of them as well as some [[millipede]]s and [[scorpion]]s become very large. First [[coal]] forests ([[Lepidodendron|scale trees]], ferns, [[Sigillaria|club trees]], [[Calamites|giant horsetails]], ''[[Cordaites]]'', etc.). Higher [[atmosphere of Earth|atmospheric]] [[oxygen]] levels. [[Permo-Carboniferous|Ice Age]] continues to the Early Permian. [[Goniatite]]s, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. First [[woodlice]]. Testate [[foram]]s proliferate. [[Euramerica]] collides with [[Gondwana]] and Siberia-Kazakhstania, the latter of which forms [[Laurasia]] and the [[Uralian orogeny]]. Variscan orogeny continues (these collisions created orogenies, and ultimately [[Pangaea]]). [[Amphibian]]s (e.g. temnospondyls) spread in Euramerica, with some becoming the first [[amniote]]s. [[Carboniferous Rainforest Collapse]] occurs, initiating a dry climate which favors amniotes over amphibians. Amniotes diversify rapidly into [[synapsids]], [[parareptiles]], [[Captorhinidae|cotylosaurs]], [[protorothyridids]] and [[diapsids]]. [[Rhizodont]]s remained common before they died out by the end of the period. First [[sharks]]. | style="background:{{period color|Gzhelian}}" |{{Period start|gzhelian}} {{Period start error|gzhelain}} |- | style="background:{{period color|Kasimovian}}" |[[Kasimovian]] | style="background:{{period color|Kasimovian}}" |{{Period start|kasimovian}} {{Period start error|kasimovian}} |- | style="background:{{period color|Moscovian}}" |[[Moscovian (Carboniferous)|Moscovian]] | style="background:{{period color|Moscovian}}" |{{Period start|moscovian}} {{Period start error|moscovian}} |- | style="background:{{period color|Bashkirian}}" |[[Bashkirian]] | style="background:{{period color|Bashkirian}}" |{{Period start|bashkirian}} {{Period start error|bashkrian}}<sup>*</sup> |- | rowspan="3" style="background:{{period color|Mississippian}}" |[[Mississippian (geology)|Mississippian]]<br/>{{efn|group=note|name=MissiPenns}} | style="background:{{period color|Serpukhovian}}" |[[Serpukhovian]] | rowspan="3" |Large [[Lycopodiophyta|lycopodian primitive trees]] flourish and amphibious [[eurypterid]]s live amid [[coal]]-forming coastal [[Brackish water|swamps]], radiating significantly one last time. First [[gymnosperms]]. First [[Holometabola|holometabolous]], [[paraneoptera]]n, [[polyneoptera]]n, [[odonatoptera]]n and [[ephemeroptera]]n insects and first [[barnacles]]. First five-digited [[tetrapods]] (amphibians) and [[land snails]]. In the oceans, [[Bony fish|bony]] and [[Chondrichthyes|cartilaginous fishes]] are dominant and diverse; [[echinoderm]]s (especially [[crinoid]]s and [[blastoid]]s) abundant. [[Coral]]s, [[bryozoa]]ns, [[orthocerida]]ns, [[goniatite]]s and brachiopods ([[Productida]], [[Spiriferida]], etc.) recover and become very common again, but [[Trilobita|trilobites]] and [[nautiloid]]s decline. [[Karoo Ice Age|Glaciation]] in East [[Gondwana]] continues from Late Devonian. [[Mayor Island/Tuhua|Tuhua Orogeny]] in New Zealand tapers off. Some lobe finned fish called rhizodonts become abundant and dominant in freshwaters. [[Siberia (continent)|Siberia]] collides with a different small continent, [[Kazakhstania]]. | style="background:{{period color|Serpukhovian}}" |{{Period start|serpukhovian}} {{Period start error|serpukhovian}} |- | style="background:{{period color|visean}}" |[[Viséan]] | style="background:{{period color|visean}}" |{{Period start|visean}} {{Period start error|visean}}<sup>*</sup> |- | style="background:{{period color|Tournaisian}}" |[[Tournaisian]] | style="background:{{period color|Tournaisian}}" |{{Period start|tournaisian}} {{Period start error|tournaisian}}<sup>*</sup> |- | rowspan="7" style="background:{{period color|Devonian}}" |[[Devonian]] | rowspan="2" style="background:{{period color|Late Devonian}}" |[[Late Devonian|Upper/Late]] | style="background:{{period color|Famennian}}" |[[Famennian]] | rowspan="7" |First [[Lycopodiopsida|lycopods]], [[ferns]], [[seed plants]] ([[seed ferns]], from earlier [[progymnosperm]]s), first trees (the progymnosperm ''[[Archaeopteris]]''), and first [[Pterygota|winged insects]] (palaeoptera and neoptera). [[Strophomenida|Strophomenid]] and [[Atrypa|atrypid]] [[brachiopod]]s, [[Rugosa|rugose]] and [[Tabulata|tabulate]] corals, and [[crinoid]]s are all abundant in the oceans. First fully coiled cephalopods ([[Ammonoidea]] and [[Nautilida]], independently) with the former group very abundant (especially [[goniatite]]s). Trilobites and ostracoderms decline, while jawed fishes ([[Placodermi|placoderms]], [[Sarcopterygii|lobe-finned]] and [[Actinopterygii|ray-finned]] [[Osteichthyes|bony fish]], and [[acanthodians]] and early [[Chondrichthyes|cartilaginous fish]]) proliferate. Some [[Tetrapodomorpha|lobe finned fish]] transform into digited [[Stegocephalia|fishapods]], slowly becoming amphibious. The last non-trilobite artiopods die off. First [[decapods]] (like [[prawns]]) and [[isopods]]. Pressure from jawed fishes cause eurypterids to decline and [[Coleoidea|some cephalopods]] to lose their shells while anomalocarids vanish. "Old Red Continent" of [[Euramerica]] persists after forming in the Caledonian orogeny. Beginning of [[Acadian Orogeny]] for [[Atlas Mountains|Anti-Atlas Mountains]] of North Africa, and [[Appalachian Mountains]] of North America, also the [[Antler Orogeny|Antler]], [[Variscan Orogeny|Variscan]], and [[Mayor Island/Tuhua|Tuhua orogenies]] in New Zealand. A series of extinction events, including the massive [[Kellwasser event|Kellwasser]] and [[Hangenberg event|Hangenberg]] ones, wipe out many acritarchs, corals, sponges, molluscs, trilobites, eurypterids, graptolites, brachiopods, crinozoans (e.g. all [[cystoids]]), and fish, including all placoderms and ostracoderms. | style="background:{{period color|Famennian}}" |{{Period start|famennian}} {{Period start error|famennian}}<sup>*</sup> |- | style="background:{{period color|Frasnian}}" |[[Frasnian]] | style="background:{{period color|Frasnian}}" |{{Period start|frasnian}} {{Period start error|frasnian}}<sup>*</sup> |- | rowspan="2" style="background:{{period color|Middle Devonian}}" |[[Middle Devonian|Middle]] | style="background:{{period color|Givetian}}" |[[Givetian]] | style="background:{{period color|Givetian}}" |{{Period start|givetian}} {{Period start error|givetian}}<sup>*</sup> |- | style="background:{{period color|Eifelian}}" |[[Eifelian]] | style="background:{{period color|Eifelian}}" |{{Period start|eifelian}} {{Period start error|eifelian}}<sup>*</sup> |- | rowspan="3" style="background:{{period color|Early Devonian}}" |[[Early Devonian|Lower/Early]] | style="background:{{period color|Emsian}}" |[[Emsian]] | style="background:{{period color|Emsian}}" |{{Period start|emsian}} {{Period start error|emsian}}<sup>*</sup> |- | style="background:{{period color|Pragian}}" |[[Pragian]] | style="background:{{period color|Pragian}}" |{{Period start|pragian}} {{Period start error|pragian}}<sup>*</sup> |- | style="background:{{period color|Lochkovian}}" |[[Lochkovian]] | style="background:{{period color|Lochkovian}}" |{{Period start|lochkovian}} {{Period start error|lochkovian}}<sup>*</sup> |- | rowspan="8" style="background:{{period color|Silurian}}" |[[Silurian]] | colspan="2" style="background:{{period color|Pridoli}}" |[[Pridoli epoch|Pridoli]] | rowspan="8" |[[Ozone layer]] thickens. First [[vascular plant]]s and fully terrestrialised arthropods: [[myriapods]], [[Hexapoda|hexapods]] (including [[insects]]), and [[arachnids]]. [[Eurypterid]]s diversify rapidly, becoming widespread and dominant. Cephalopods continue to flourish. True [[jawed fish]]es, along with [[ostracoderm]]s, also roam the seas. [[Tabulate coral|Tabulate]] and [[Rugosa|rugose]] corals, [[brachiopod]]s (''Pentamerida'', [[Rhynchonellida]], etc.), [[cystoids]] and [[crinoid]]s all abundant. [[Trilobite]]s and [[mollusc]]s diverse; [[graptolite]]s not as varied. Three minor extinction events. Some echinoderms go extinct. Beginning of [[Caledonian Orogeny]] (collision between Laurentia, Baltica and one of the formerly small Gondwanan terranes) for hills in England, Ireland, Wales, Scotland, and the [[Scandinavian Mountains]]. Also continued into Devonian period as the [[Acadian Orogeny]], above (thus Euramerica forms). [[Taconic Orogeny]] tapers off. [[Andean-Saharan glaciation|Icehouse period]] ends late in this period after starting in Late Ordovician. [[Lachlan Orogeny]] on [[Australia (continent)|Australian continent]] tapers off. | style="background:{{period color|Pridoli}}" |{{Period start|pridoli}} {{Period start error|pridoli}}<sup>*</sup> |- | rowspan="2" style="background:{{period color|Ludlow}}" |[[Ludlow epoch|Ludlow]] | style="background:{{period color|Ludfordian}}" |[[Ludfordian]] | style="background:{{period color|Ludfordian}}" |{{Period start|ludfordian}} {{Period start error|ludfordian}}<sup>*</sup> |- | style="background:{{period color|Gorstian}}" |[[Gorstian]] | style="background:{{period color|Gorstian}}" |{{Period start|gorstian}} {{Period start error|gorstian}}<sup>*</sup> |- | rowspan="2" style="background:{{period color|Wenlock}}" |[[Wenlock epoch|Wenlock]] | style="background:{{period color|Homerian}}" |[[Homerian]] | style="background:{{period color|Homerian}}" |{{Period start|homerian}} {{Period start error|homerian}}<sup>*</sup> |- | style="background:{{period color|Sheinwoodian}}" |[[Sheinwoodian]] | style="background:{{period color|Sheinwoodian}}" |{{Period start|sheinwoodian}} {{Period start error|sheinwoodian}}<sup>*</sup> |- | rowspan="3" style="background:{{period color|Llandovery}}" |[[Llandovery epoch|Llandovery]] | style="background:{{period color|Telychian}}" |[[Telychian]] | style="background:{{period color|Telychian}}" |{{Period start|telychian}} {{Period start error|telychian}}<sup>*</sup> |- | style="background:{{period color|Aeronian}}" |[[Aeronian]] | style="background:{{period color|Aeronian}}" |{{Period start|aeronian}} {{Period start error|aeronian}}<sup>*</sup> |- | style="background:{{period color|Rhuddanian}}" |[[Rhuddanian]] | style="background:{{period color|Rhuddanian}}" |{{Period start|rhuddanian}} {{Period start error|rhuddanian}}<sup>*</sup> |- | rowspan="7" style="background:{{period color|Ordovician}}" |[[Ordovician]] | rowspan="3" style="background:{{period color|Late Ordovician}}" |[[Late Ordovician|Upper/Late]] | style="background:{{period color|Hirnantian}}" |[[Hirnantian]] | rowspan="7" |The [[Great Ordovician Biodiversification Event]] occurs as plankton increase in number: [[invertebrate]]s diversify into many new types (especially brachiopods and molluscs; e.g. long [[Orthoconic|straight-shelled]] cephalopods like the long lasting and diverse [[Orthocerida]]). Early [[coral]]s, articulate [[brachiopod]]s (''Orthida'', ''Strophomenida'', etc.), [[bivalves]], [[cephalopod]]s (nautiloids), [[trilobite]]s, [[ostracod]]s, [[bryozoa]]ns, many types of [[echinoderms]] ([[blastoids]], [[cystoids]], [[crinoids]], [[sea urchins]], [[sea cucumbers]], and [[Asterozoa|star-like forms]], etc.), branched [[graptolite]]s, and other taxa all common. [[Acritarch]]s still persist and common. Cephalopods become dominant and common, with some trending toward a coiled shell. Anomalocarids decline. Mysterious [[tentaculita]]ns appear. First [[eurypterids]] and [[ostracoderm]] fish appear, the latter probably giving rise to the [[jawed fish]] at the end of the period. First uncontroversial terrestrial [[fungi]] and fully terrestrialised [[Embryophyte|plants]]. [[Late Ordovician glaciation|Ice age]] at the end of this period, as well as a series of mass [[Late Ordovician mass extinction|extinction events]], killing off some cephalopods and many brachiopods, bryozoans, echinoderms, graptolites, trilobites, bivalves, corals and [[conodonts]]. | style="background:{{period color|Hirnantian}}" |{{Period start|hirnantian}} {{Period start error|hirnantian}}<sup>*</sup> |- | style="background:{{period color|Katian}}" |[[Katian]] | style="background:{{period color|Katian}}" |{{Period start|katian}} {{Period start error|katian}}<sup>*</sup> |- | style="background:{{period color|Sandbian}}" |[[Sandbian]] | style="background:{{period color|Sandbian}}" |{{Period start|sandbian}} {{Period start error|sandbian}}<sup>*</sup> |- | rowspan="2" style="background:{{period color|Middle Ordovician}}" |[[Middle Ordovician|Middle]] | style="background:{{period color|Darriwilian}}" |[[Darriwilian]] | style="background:{{period color|Darriwilian}}" |{{Period start|darriwilian}} {{Period start error|darriwilian}}<sup>*</sup> |- | style="background:{{period color|Dapingian}}" |[[Dapingian]] | style="background:{{period color|Dapingian}}" |{{Period start|dapingian}} {{Period start error|dapingian}}<sup>*</sup> |- | rowspan="2" style="background:{{period color|Early Ordovician}}" |[[Early Ordovician|Lower/Early]] | style="background:{{period color|Floian}}" |[[Floian]]<br />(formerly [[Arenig]]) | style="background:{{period color|Floian}}" |{{Period start|floian}} {{Period start error|floian}}<sup>*</sup> |- | style="background:{{period color|Tremadocian}}" |[[Tremadocian]] | style="background:{{period color|Tremadocian}}" |{{Period start|tremadocian}} {{Period start error|tremadocian}}<sup>*</sup> |- | rowspan="10" style="background:{{period color|Cambrian}}" |[[Cambrian]] | rowspan="3" style="background:{{period color|Furongian}}" |[[Furongian]] | style="background:{{period color|Stage 10}}" |[[Cambrian Stage 10|Stage 10]] | rowspan="10" |Major diversification of (fossils mainly show bilaterian) life in the [[Cambrian Explosion]] as oxygen levels increase. Numerous fossils; most modern [[animal]] [[phylum|phyla]] (including [[arthropods]], [[Mollusca|molluscs]], [[annelid]]s, [[echinoderm]]s, [[hemichordate]]s and [[chordate]]s) appear. Reef-building [[archaeocyatha]]n sponges initially abundant, then vanish. Stromatolites replace them, but quickly fall prey to the [[Agronomic revolution]], when some animals started burrowing through the microbial mats (affecting some other animals as well). First [[artiopods]] (including [[trilobite]]s), [[priapulid]] worms, inarticulate [[brachiopod]]s (unhinged lampshells), [[hyoliths]], [[bryozoa]]ns, [[graptolite]]s, pentaradial echinoderms (e.g. [[blastozoa]]ns, [[crinozoa]]ns and [[eleutherozoa]]ns), and numerous other animals. [[Anomalocarid]]s are dominant and giant predators, while [[End-Ediacaran extinction|many Ediacaran fauna die out]]. [[Crustacea]]ns and molluscs diversify rapidly. [[Prokaryote]]s, [[protist]]s (e.g., [[foram]]s), [[algae]] and [[fungi]] continue to present day. First [[vertebrate]]s from earlier chordates. [[Petermann Orogeny]] on the [[Australia (continent)|Australian continent]] tapers off (550–535 Ma). Ross Orogeny in Antarctica. [[Delamerian Orogeny]] (c. 514–490 Ma) on [[Australia (continent)|Australian continent]]. Some small terranes split off from Gondwana. [[Atmosphere of Earth|Atmospheric]] {{CO2}} content roughly 15 times present-day ([[Holocene]]) levels (6000 ppm compared to today's 400 ppm)<ref name="Royer_2006" />{{efn|name="atmospheric-carbon-dioxide"|group=note}} [[Arthropod]]s and [[Embryophyte|streptophyta]] start colonising land. 3 extinction events occur 517, 502 and 488 Ma, the [[End-Botomian mass extinction|first]] and [[Cambrian–Ordovician extinction event|last]] of which wipe out many of the anomalocarids, artiopods, hyoliths, brachiopods, molluscs, and conodonts (early jawless vertebrates). | style="background:{{period color|Stage 10}}" |~{{Period start|cambrian stage 10}} |- | style="background:{{period color|Jiangshanian}}" |[[Jiangshanian]] | style="background:{{period color|Jiangshanian}}" |~{{Period start|Jiangshanian}} {{Period start error|Jiangshanian}}<sup>*</sup> |- | style="background:{{period color|Paibian}}" |[[Paibian]] | style="background:{{period color|Paibian}}" |~{{Period start|paibian}} {{Period start error|paibian}}<sup>*</sup> |- | rowspan="3" style="background:{{period color|Series 3}}" |[[Miaolingian]] | style="background:{{period color|Guzhangian}}" |[[Guzhangian]] | style="background:{{period color|Guzhangian}}" |~{{Period start|guzhangian}} {{Period start error|guzhangian}}<sup>*</sup> |- | style="background:{{period color|Drumian}}" |[[Drumian]] | style="background:{{period color|Drumian}}" |~{{Period start|drumian}} {{Period start error|drumian}}<sup>*</sup> |- | style="background:{{period color|Stage 5}}" |[[Wuliuan]] | style="background:{{period color|Stage 5}}" |~{{Period start|wuliuan}} {{Period start error|wuliuan}} |- | rowspan="2" style="background:{{period color|Series 2}}" |[[Cambrian Series 2|Series 2]] | style="background:{{period color|Stage 4}}" |[[Cambrian Stage 4|Stage 4]] | style="background:{{period color|Stage 4}}" |~{{Period start|cambrian stage 4}} {{Period start error|cambrian stage 4}} |- | style="background:{{period color|Stage 3}}" |[[Cambrian Stage 3|Stage 3]] | style="background:{{period color|Stage 3}}" |~{{Period start|cambrian stage 3}} {{Period start error|cambrian stage 3}} |- | rowspan="2" style="background:{{period color|Terreneuvian}}" |[[Terreneuvian]] | style="background:{{period color|Stage 2}}" |[[Cambrian Stage 2|Stage 2]] | style="background:{{period color|Stage 2}}" |~{{Period start|cambrian stage 2}} {{Period start error|cambrian stage 2}} |- | style="background:{{period color|Fortunian}}" |[[Fortunian]] | style="background:{{period color|Fortunian}}" |{{Period start|fortunian}} {{Period start error|fortunian}}<sup>*</sup> |- | rowspan="10" style="background:{{period color|Proterozoic}}" |[[Proterozoic]] | rowspan="3" style="background:{{period color|Neoproterozoic}}" |[[Neoproterozoic]] | style="background:{{period color|Ediacaran}}" |[[Ediacaran]] | colspan="3" |Good [[fossil]]s of primitive [[animal]]s. [[Ediacaran biota]] flourish worldwide in seas, possibly appearing after an [[Avalon explosion|explosion]], possibly caused by a large-scale oxidation event.<ref name="Williams_2019">{{Cite journal |last1=Williams |first1=Joshua J. |last2=Mills |first2=Benjamin J. W. |last3=Lenton |first3=Timothy M. |date=2019 |title=A tectonically driven Ediacaran oxygenation event |journal=Nature Communications |language=en |volume=10 |issue=1 |pages=2690 |doi=10.1038/s41467-019-10286-x |issn=2041-1723 |pmc=6584537 |pmid=31217418|bibcode=2019NatCo..10.2690W }}</ref> First [[vendozoa]]ns (unknown affinity among animals), [[cnidaria]]ns and [[bilateria]]ns. Enigmatic vendozoans include many soft-jellied creatures shaped like bags, disks, or quilts (like ''[[Dickinsonia]]''). Simple [[trace fossil]]s of possible worm-like ''[[Trichophycus pedum|Trichophycus]]'', etc. [[Taconic Orogeny]] in North America. [[Aravalli Range]] [[orogeny]] in [[Indian subcontinent]]. Beginning of [[Pan-African Orogeny]], leading to the formation of the short-lived Ediacaran supercontinent [[Pannotia]], which by the end of the period breaks up into [[Laurentia]], [[Baltica]], [[Siberia (continent)|Siberia]] and [[Gondwana]]. [[Petermann Orogeny]] forms on [[Australia (continent)|Australian continent]]. Beardmore Orogeny in Antarctica, 633–620 Ma. [[Ozone layer]] forms. An increase in oceanic [[mineral]] levels. | style="background:{{period color|Ediacaran}}" |~{{Period start|ediacaran}} {{Period start error|ediacaran}}<sup>*</sup> |- | style="background:{{period color|Cryogenian}}" |[[Cryogenian]] | colspan="3" |Possible "[[Snowball Earth]]" period. [[Fossil]]s still rare. Late Ruker / Nimrod Orogeny in Antarctica tapers off. First uncontroversial [[Sponge|animal]] fossils. First hypothetical [[Amastigomycota|terrestrial fungi]]<ref name="NaranjoOrtiz_2019">{{cite journal |last1=Naranjo-Ortiz |first1=Miguel A. |last2=Gabaldón |first2=Toni |date=2019-04-25 |title=Fungal evolution: major ecological adaptations and evolutionary transitions |journal=[[Biological Reviews of the Cambridge Philosophical Society]] |publisher=[[Cambridge Philosophical Society]] ([[Wiley Publishing|Wiley]]) |volume=94 |issue=4 |pages=1443–1476 |doi=10.1111/brv.12510 |pmid=31021528 |pmc=6850671 |s2cid=131775942 |issn=1464-7931}}</ref> and [[streptophyta]].<ref name="Zarsky_2022">{{Cite journal |last1=Žárský |first1=Jakub |last2=Žárský |first2=Vojtěch |last3=Hanáček |first3=Martin |last4=Žárský |first4=Viktor |date=2022-01-27 |title=Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split |journal=Frontiers in Plant Science |volume=12 |pages=735020 |doi=10.3389/fpls.2021.735020 |issn=1664-462X |pmc=8829067 |pmid=35154170|doi-access=free }}</ref> | style="background:{{period color|Cryogenian}}" |~{{Period start|cryogenian}} {{Period start error|cryogenian}} |- | style="background:{{period color|Tonian}}" |[[Tonian]] | colspan="3" |Final assembly of [[Rodinia]] supercontinent occurs in early Tonian, with breakup beginning c. 800 Ma. [[Sveconorwegian orogeny]] ends. [[Grenville Orogeny]] tapers off in North America. Lake Ruker / Nimrod Orogeny in Antarctica, 1,000 ± 150 Ma. Edmundian Orogeny (c. 920–850 Ma), [[Gascoyne Complex]], Western Australia. Deposition of [[Adelaide Superbasin]] and [[Centralian Superbasin]] begins on [[Australia (continent)|Australian continent]]. First hypothetical [[animals]] (from holozoans) and terrestrial algal mats. Many endosymbiotic events concerning red and green algae occur, transferring plastids to [[ochrophyta]] (e.g. [[diatoms]], [[brown algae]]), [[dinoflagellate]]s, [[cryptophyta]], [[haptophyta]], and [[euglenid]]s (the events may have begun in the Mesoproterozoic)<ref name="Yoon_2004">{{Cite journal |last1=Yoon |first1=Hwan Su |last2=Hackett |first2=Jeremiah D. |last3=Ciniglia |first3=Claudia |last4=Pinto |first4=Gabriele |last5=Bhattacharya |first5=Debashish |date=2004 |title=A Molecular Timeline for the Origin of Photosynthetic Eukaryotes |url=https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msh075 |journal=Molecular Biology and Evolution |language=en |volume=21 |issue=5 |pages=809–818 |doi=10.1093/molbev/msh075 |pmid=14963099 |issn=1537-1719|doi-access=free }}</ref> while the first [[retaria]]ns (e.g. [[forams]]) also appear: eukaryotes diversify rapidly, including algal, eukaryovoric and [[Biomineralization|biomineralised]] forms. [[Trace fossil]]s of simple [[Multicellular|multi-celled]] eukaryotes. [[Neoproterozoic oxygenation event]] (NOE), 850–540 Ma.<ref>{{Cite journal |last1=Och |first1=Lawrence M. |last2=Shields-Zhou |first2=Graham A. |date=2012-01-01 |title=The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825211001498 |journal=Earth-Science Reviews |language=en |volume=110 |issue=1–4 |pages=26–57 |doi=10.1016/j.earscirev.2011.09.004}}</ref> | style="background:{{period color|Tonian}}" |{{Period start|tonian}} {{Period start error|tonian}}{{efn|name="absolute-age"|Defined by absolute age ([[Global Standard Stratigraphic Age]]).|group=note}} |- | rowspan="3" style="background:{{period color|Mesoproterozoic}}" |[[Mesoproterozoic]] | style="background:{{period color|Stenian}}" |[[Stenian]] | colspan="3" |Narrow highly [[Metamorphic rock|metamorphic]] belts due to [[orogeny]] as [[Rodinia]] forms, surrounded by the [[Pan-African Ocean]]. [[Sveconorwegian orogeny]] starts. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1,080–), [[Musgrave Block]], [[Central Australia]]. [[Stromatolite]]s decline as [[algae]] proliferate. | style="background:{{period color|Stenian}}" |{{Period start|stenian}} {{Period start error|stenian}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Ectasian}}" |[[Ectasian]] | colspan="3" |[[Platform cover]]s continue to expand. [[Alga]]l [[Colony (biology)|colonies]] in the seas. [[Grenville Orogeny]] in North America. Columbia breaks up. | style="background:{{period color|Ectasian}}" |{{Period start|ectasian}} {{Period start error|ectasian}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Calymmian}}" |[[Calymmian]] | colspan="3" |[[Platform cover]]s expand. Barramundi Orogeny, [[McArthur Basin]], [[Northern Australia]], and Isan Orogeny, {{circa}} 1,600 Ma, Mount Isa Block, Queensland. First [[archaeplastida]]ns (the first eukaryotes with [[plastids]] from cyanobacteria; e.g. [[Red algae|red]] and [[green algae]]) and [[opisthokonts]] (giving rise to the first [[fungi]] and [[holozoa]]ns). [[Acritarch]]s (remains of marine algae possibly) start appearing in the fossil record. | style="background:{{period color|Calymmian}}" |{{Period start|calymmian}} {{Period start error|calymmian}}{{efn|name="absolute-age"|group=note}} |- | rowspan="4" style="background:{{period color|Paleoproterozoic}}" |[[Paleoproterozoic]] | style="background:{{period color|Statherian}}" |[[Statherian]] | colspan="3" |First uncontroversial [[eukaryotes]]: [[protist]]s with nuclei and endomembrane system. [[Columbia (supercontinent)|Columbia]] forms as the second undisputed earliest supercontinent. Kimban Orogeny in Australian continent ends. Yapungku Orogeny on [[Yilgarn craton]], in Western Australia. Mangaroon Orogeny, 1,680–1,620 Ma, on the [[Gascoyne Complex]] in Western Australia. Kararan Orogeny (1,650 Ma), Gawler craton, [[South Australia]]. Oxygen levels drop again. | style="background:{{period color|Statherian}}" |{{Period start|statherian}} {{Period start error|statherian}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Orosirian}}" |[[Orosirian]] | colspan="3" |The [[Atmosphere of Earth|atmosphere]] becomes much more [[oxygen]]ic while more cyanobacterial stromatolites appear. [[Vredefort impact structure|Vredefort]] and [[Sudbury Basin]] asteroid impacts. Much [[orogeny]]. [[Penokean orogeny|Penokean]] and [[Trans-Hudsonian Orogeny|Trans-Hudsonian Orogenies]] in North America. Early Ruker Orogeny in Antarctica, 2,000–1,700 Ma. Glenburgh Orogeny, [[Gascoyne Complex|Glenburgh Terrane]], [[Australia (continent)|Australian continent]] {{circa}} 2,005–1,920 Ma. Kimban Orogeny, [[Gawler craton]] in Australian continent begins. | style="background:{{period color|Orosirian}}" |{{Period start|orosirian}} {{Period start error|orosirian}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Rhyacian}}" |[[Rhyacian]] | colspan="3" |[[Bushveld Igneous Complex]] forms. [[Huronian]] glaciation. First hypothetical [[eukaryote]]s. Multicellular [[Francevillian biota]]. Kenorland disassembles. | style="background:{{period color|Rhyacian}}" |{{Period start|rhyacian}} {{Period start error|rhyacian}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Siderian}}" |[[Siderian]] | colspan="3" |[[Great Oxidation Event]] (due to [[cyanobacteria]]) increases oxygen. Sleaford Orogeny on [[Australia (continent)|Australian continent]], [[Gawler craton]] 2,440–2,420 Ma. | style="background:{{period color|Siderian}}" |{{Period start|siderian}} {{Period start error|siderian}}{{efn|name="absolute-age"|group=note}} |- | rowspan="4" style="background:{{period color|Archean}}" |[[Archean]] | style="background:{{period color|Neoarchean}}" |[[Neoarchean]] | colspan="4" |Stabilization of most modern [[craton]]s; possible [[Mantle (geology)|mantle]] overturn event. Insell Orogeny, 2,650 ± 150 Ma. [[Abitibi greenstone belt]] in present-day [[Ontario]] and [[Quebec]] begins to form, stabilises by 2,600 Ma. First uncontroversial [[supercontinent]], [[Kenorland]], and first terrestrial [[prokaryotes]]. | style="background:{{period color|Neoarchean}}" |{{Period start|neoarchean}} {{Period start error|neoarchean}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Mesoarchean}}" |[[Mesoarchean]] | colspan="4" |[[Stromatolite]]s (probably [[Colony (biology)|colonial]] phototrophic bacteria, like cyanobacteria). Oldest [[macrofossil]]s. Humboldt Orogeny in Antarctica. [[Blake River Megacaldera Complex]] begins to form in present-day [[Ontario]] and [[Quebec]], ends by roughly 2,696 Ma. | style="background:{{period color|Mesoarchean}}" |{{Period start|mesoarchean}} {{Period start error|mesoarchean}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Paleoarchean}}" |[[Paleoarchean]] | colspan="4" |Prokaryotic [[archaea]] (e.g. [[methanogens]]) and [[bacteria]] (e.g. [[cyanobacteria]]) diversify rapidly, along with early [[viruses]]. First known [[phototroph]]ic [[bacteria]]. Oldest definitive [[microfossils]]. First [[microbial mats, stromatolites and MISS]]. Oldest [[craton]]s on Earth (such as the [[Canadian Shield]] and the [[Pilbara craton|Pilbara Craton]]) may have formed during this period.{{efn|The age of the oldest measurable [[craton]], or [[continental crust]], is dated to 3,600–3,800 Ma.|name="Oldest-craton"|group=note}} Rayner Orogeny in Antarctica. | style="background:{{period color|Paleoarchean}}" |{{Period start|paleoarchean}} {{Period start error|paleoarchean}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Eoarchean}}" |[[Eoarchean]] | colspan="4" |First uncontroversial [[Life|living organisms]]: at first [[protocell]]s with [[RNA world|RNA-based genes]] around 4000 Ma, after which true [[cell (biology)|cells]] ([[prokaryote]]s) evolve along with [[proteins]] and [[DNA]]-based genes around 3800 Ma. The end of the [[Late Heavy Bombardment]]. [[Napier Mountains|Napier]] Orogeny in Antarctica, 4,000 ± 200 Ma. | style="background:{{period color|Eoarchean}}" |{{Period start|eoarchean}} {{Period start error|eoarchean}}{{efn|name="absolute-age"|group=note}} |- | style="background:{{period color|Hadean}}" |[[Hadean]] | colspan="5" |Formation of [[protolith]] of the oldest known rock ([[Acasta Gneiss]]) c. 4,031 to 3,580 Ma.<ref name="Bowring_1999">{{cite journal |last1=Bowring |first1=Samuel A. |last2=Williams |first2=Ian S. |year=1999 |title=Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada |journal=Contributions to Mineralogy and Petrology |volume=134 |issue=1 |pages=3 |bibcode=1999CoMP..134....3B |doi=10.1007/s004100050465 |s2cid=128376754}}</ref><ref name="Iizuka_2007">{{Citation |last1=Iizuka |first1=Tsuyoshi |date=2007 |url=https://linkinghub.elsevier.com/retrieve/pii/S0166263507150313 |volume=15 |pages=127–147 |publisher=Elsevier |language=en |doi=10.1016/s0166-2635(07)15031-3 |isbn=978-0-444-52810-0 |access-date=2022-05-01 |last2=Komiya |first2=Tsuyoshi |last3=Maruyama |first3=Shigenori|title=Chapter 3.1 the Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution |series=Developments in Precambrian Geology }}</ref> Possible first appearance of [[plate tectonic]]s. First hypothetical [[Abiogenesis|life forms]]. End of the Early Bombardment Phase. Oldest known [[mineral]] ([[Zircon]], 4,404 ± 8 Ma).<ref name="Wilde_2001">{{Cite journal |last1=Wilde |first1=Simon A. |last2=Valley |first2=John W. |last3=Peck |first3=William H. |last4=Graham |first4=Colin M. |date=2001 |title=Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago |url=http://www.nature.com/articles/35051550 |journal=Nature |language=en |volume=409 |issue=6817 |pages=175–178 |doi=10.1038/35051550 |issn=0028-0836 |pmid=11196637 |s2cid=4319774}}</ref> Asteroids and comets bring water to Earth, forming the first oceans. Formation of [[Moon]] (4,510 Ma), probably from a [[Giant impact hypothesis|giant impact]]. Formation of Earth (4,543 to 4,540 Ma) | style="background:{{period color|Hadean}}" |{{Period start|hadean}} {{Period start error|hadean}}{{efn|name="absolute-age"|group=note}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)