Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Glossary of order theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== R == * '''Reflecting'''. A function ''f'' between posets ''P'' and ''Q'' is said to reflect suprema (joins), if, for all subsets ''X'' of ''P'' for which the supremum sup{''f''(''x''): ''x'' in ''X''} exists and is of the form ''f''(''s'') for some ''s'' in ''P'', then we find that sup ''X'' exists and that sup ''X'' = ''s'' . Analogously, one says that ''f'' reflects finite, non-empty, directed, or arbitrary joins (or meets). The converse property is called ''join-preserving''. * '''[[Reflexive relation|Reflexive]]'''. A [[binary relation]] ''R'' on a set ''X'' is reflexive, if ''x R x'' holds for every element ''x'' in ''X''. * '''Residual'''. A dual map attached to a [[residuated mapping]]. * '''[[Residuated mapping]]'''. A monotone map for which the preimage of a principal down-set is again principal. Equivalently, one component of a Galois connection.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)