Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gradient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== === Jacobian === {{Main|Jacobian matrix and determinant}} The [[Jacobian matrix]] is the generalization of the gradient for vector-valued functions of several variables and [[differentiable map]]s between [[Euclidean space]]s or, more generally, [[manifold]]s.<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=87,248}}</ref><ref>{{harvtxt|Kreyszig|1972|pp=333,353,496}}</ref> A further generalization for a function between [[Banach space]]s is the [[FrΓ©chet derivative]]. Suppose {{math|'''f''' : '''R'''<sup>''n''</sup> β '''R'''<sup>''m''</sup>}} is a function such that each of its first-order partial derivatives exist on {{math|β<sup>''n''</sup>}}. Then the Jacobian matrix of {{math|'''f'''}} is defined to be an {{math|''m''Γ''n''}} matrix, denoted by <math>\mathbf{J}_\mathbb{f}(\mathbb{x})</math> or simply <math>\mathbf{J}</math>. The {{math|(''i'',''j'')}}th entry is <math display="inline">\mathbf J_{ij} = {\partial f_i} / {\partial x_j}</math>. Explicitly <math display="block">\mathbf J = \begin{bmatrix} \dfrac{\partial \mathbf{f}}{\partial x_1} & \cdots & \dfrac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^\mathsf{T} f_1 \\ \vdots \\ \nabla^\mathsf{T} f_m \end{bmatrix} = \begin{bmatrix} \dfrac{\partial f_1}{\partial x_1} & \cdots & \dfrac{\partial f_1}{\partial x_n}\\ \vdots & \ddots & \vdots\\ \dfrac{\partial f_m}{\partial x_1} & \cdots & \dfrac{\partial f_m}{\partial x_n} \end{bmatrix}.</math> ===Gradient of a vector field=== {{see also|Covariant derivative}} Since the [[total derivative]] of a vector field is a [[linear mapping]] from vectors to vectors, it is a [[tensor]] quantity. In rectangular coordinates, the gradient of a vector field {{math|1='''f''' = ( ''f''{{i sup|1}}, ''f''{{i sup|2}}, ''f''{{i sup|3}})}} is defined by: <math display="block">\nabla \mathbf{f}=g^{jk}\frac{\partial f^i}{\partial x^j} \mathbf{e}_i \otimes \mathbf{e}_k,</math> (where the [[Einstein summation notation]] is used and the [[tensor product]] of the vectors {{math|'''e'''<sub>''i''</sub>}} and {{math|'''e'''<sub>''k''</sub>}} is a [[dyadic tensor]] of type (2,0)). Overall, this expression equals the transpose of the Jacobian matrix: <math display="block">\frac{\partial f^i}{\partial x^j} = \frac{\partial (f^1,f^2,f^3)}{\partial (x^1,x^2,x^3)}.</math> In curvilinear coordinates, or more generally on a curved [[Riemannian manifold|manifold]], the gradient involves [[Christoffel symbols]]: <math display="block">\nabla \mathbf{f}=g^{jk}\left(\frac{\partial f^i}{\partial x^j}+{\Gamma^i}_{jl}f^l\right) \mathbf{e}_i \otimes \mathbf{e}_k,</math> where {{math|''g''{{i sup|''jk''}}}} are the components of the inverse [[metric tensor]] and the {{math|'''e'''<sub>''i''</sub>}} are the coordinate basis vectors. Expressed more invariantly, the gradient of a vector field {{math|'''f'''}} can be defined by the [[Levi-Civita connection]] and metric tensor:<ref>{{harvnb|Dubrovin|Fomenko|Novikov|1991|pages=348β349}}.</ref> <math display="block">\nabla^a f^b = g^{ac} \nabla_c f^b ,</math> where {{math|β<sub>''c''</sub>}} is the connection. ===Riemannian manifolds=== For any [[smooth function]] {{mvar|f}} on a Riemannian manifold {{math|(''M'', ''g'')}}, the gradient of {{math|''f''}} is the vector field {{math|β''f''}} such that for any vector field {{math|''X''}}, <math display="block">g(\nabla f, X) = \partial_X f,</math> that is, <math display="block">g_x\big((\nabla f)_x, X_x \big) = (\partial_X f) (x),</math> where {{math|''g''<sub>''x''</sub>( , )}} denotes the [[inner product]] of tangent vectors at {{math|''x''}} defined by the metric {{math|''g''}} and {{math|β<sub>''X''</sub> ''f''}} is the function that takes any point {{math|''x'' β ''M''}} to the directional derivative of {{math|''f''}} in the direction {{math|''X''}}, evaluated at {{math|''x''}}. In other words, in a [[coordinate chart]] {{math|''Ο''}} from an open subset of {{math|''M''}} to an open subset of {{math|'''R'''<sup>''n''</sup>}}, {{math|(β<sub>''X''</sub> ''f'' )(''x'')}} is given by: <math display="block">\sum_{j=1}^n X^{j} \big(\varphi(x)\big) \frac{\partial}{\partial x_{j}}(f \circ \varphi^{-1}) \Bigg|_{\varphi(x)},</math> where {{math|''X''{{isup|''j''}}}} denotes the {{math|''j''}}th component of {{math|''X''}} in this coordinate chart. So, the local form of the gradient takes the form: <math display="block">\nabla f = g^{ik} \frac{\partial f}{\partial x^k} {\textbf e}_i .</math> Generalizing the case {{math|1=''M'' = '''R'''<sup>''n''</sup>}}, the gradient of a function is related to its exterior derivative, since <math display="block">(\partial_X f) (x) = (df)_x(X_x) .</math> More precisely, the gradient {{math|β''f''}} is the vector field associated to the differential 1-form {{math|''df''}} using the [[musical isomorphism]] <math display="block">\sharp=\sharp^g\colon T^*M\to TM</math> (called "sharp") defined by the metric {{math|''g''}}. The relation between the exterior derivative and the gradient of a function on {{math|'''R'''<sup>''n''</sup>}} is a special case of this in which the metric is the flat metric given by the dot product.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)