Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Harmonic forms=== One generalization of the study of harmonic functions is the study of [[harmonic form]]s on [[Riemannian manifold]]s, and it is related to the study of [[cohomology]]. Also, it is possible to define harmonic vector-valued functions, or harmonic maps of two Riemannian manifolds, which are critical points of a generalized Dirichlet energy functional (this includes harmonic functions as a special case, a result known as [[Dirichlet principle]]). This kind of harmonic map appears in the theory of minimal surfaces. For example, a curve, that is, a map from an interval in {{tmath|\R}} to a Riemannian manifold, is a harmonic map if and only if it is a [[geodesic]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)